Resumen
La coexistencia de gestación y la diabetes mellitus resulta en malformaciones mayores incompatibles con la vida, retraso de desarrollo, pérdida de gestación, o muerte materno-fetal. El tratamiento con glicina revierte los efectos nocivos de la glucosa, en pacientes masculinos y en modelos animales; así como las alteraciones metabólicas y bioquímicas causadas por la diabetes mellitus/hiperglucemia. Sin embargo, no se ha investigado el efecto sobre el embarazo diabético, por lo que se diseñó este trabajo. Se tuvieron ratas preñadas que se asignaron aleatoriamente a cuatro grupos: control, glicina, diabéticos, diabéticos + glicina. Los sujetos se eutanizaron el día 19 de gestación, se obtuvieron los fetos, así como hígado y suero sanguíneo materno. Los fetos se evaluaron para detectar malformaciones, tanto gruesas como internas. El suero materno se procesó para determinar glucosa, colesterol y triglicéridos; en el hígado fetal se determinaron las actividades de las enzimas depuradoras de radicales libres y la lipoperoxidación. La administración de glicina mejora el desarrollo fetal, y los parámetros bioquímico-clínicos, y en ratas sanas, no afecta dichos parámetros ni el desarrollo fetal. La glucosa en exceso puede causar estrés oxidativo, que es revertido parcialmente por la glicina, lo que mejora el desarrollo fetal alterado por la hiperglucemia.
Citas
Aebi, H.E. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
Al-Ghafli, M.H., Padmanabhan, R., Kataya, H.H., & Berg, B. (2004). Effects of α-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat foetuses. Molecular and Cellular Biochemistry, 26, 123-135. https://doi.org/10.1023/b:mcbi.0000028747.92084.42
Alcaraz-Contreras, Y., Garza-Ocañas, L., Carcaño-Díaz, K., & Ramírez-Gómez, X.S. (2011). Effect of glycine on leadmobilization, lead-induced oxidative stress, and hepatic toxicity in rats. Journal of Toxicology, 2011, 430539. https://doi.org/10.1155/2011/430539
Alvarado-Vásquez, N., Lascurain, R., Cerón, E., Vanda, B., Carvajal-Sandoval, G., Tapia, A., Guevara, J., Montaño, L.F., & Zenteno, E. (2006). Oral glycine administration attenuates diabetic complications in streptozotocin-induced diabetic rats. Life Sciences, 79(3), 225-232. https://doi.org/10.1016/j.lfs.2005.12.055
Alvarado-Vásquez, N., Zamudio, P., Cerón, E., Vanda, B., Zenteno, E, & Carvajal-Sandoval G. (2003). Effect of glycine in streptozotocin-induced diabetic rats. Comparative Biochemistry and Physiology C: Toxicology and Pharmacology, 134(4), 521-527. https://doi.org/10.1016/s1532-0456(03)00046-2
Baker, L., & Piddington, R. (1993). Diabetic embryopathy: a selective review of diabetic trends. Journal of Diabetes and their Complications, 7(3), 204-212. https://doi.org/10.1016/1056-8727(93)90046-2
Barrow, M.V., & Taylor J. (1969). A rapid method for detecting malformations in rat fetuses. Journal of Morphology,127(3), 291-306. https://doi.org/10.1002/jmor.1051270303
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. https://doi.org/10.1016/0003-2697(71)90370-8
Beaudoin, A.R. (1980). Embryology and teratology. In: Baker HJ, & Lindsey JR. The laboratory rat. New York: Academic Press, Vol. I. p. 75-101.
Buchanan, T.A., & Kitzmiller, J.L. (1994). Metabolic interactions of diabetes and pregnancy. Annual Review of Medicine, 45, 245-260. https://doi.org/10.1146/annurev.med.45.1.245
Cao, l., Tan, C., Meng, F., Liu, P., Reece, A., & Zhao, Z. (2016). Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin. Science Reports, 6, 21491. https://doi.org/10.1038/srep21491
Carvajal-Sandoval, G., Juárez, C.E., Ramos-Martínez, G., & Carvajal-Juárez, M.E. (1995). Inhibición de la glicosilación no enzimática de la hemoglobina en la diabetes mellitus. Revista del Instituto Nacional de Enfermedades Respiratorias, 8(3), 185-188. https://pesquisa.bvsalud.org/portal/resource/pt/lil-162073
Carvajal-Sandoval, G., Juárez, E., Ramos-Martínez, G., Carvajal-Juárez, M.E., & Medina-Santillán, R. (1999a). Inhibition of hemoglobin glycation with glycine in induced diabetes mellitus in rats. Proceedings of the Western Pharmacological Society, 42, 35-36. PMID: 10697682
Carvajal-Sandoval, G., Medina-Santillán, R., Juárez, E., Ramos-Martinez, G., & Carvajal-Juárez, E (1999b) Effect of glycine on hemoglobin glycation in diabetic patients. Proceedings of the Western Pharmacological Society, 42, 31-32. PMID: 10697680
Carvajal-Sandoval, G., Zamudio-Cortes, P., Carvajal-Juárez, M.E., & Juárez-de Carvajal, E. (2007). Prevención de los daños producidos por la diabetes mellitus y la senescencia. Gaceta Médica de México, 143, 53-61. https://www.medigraphic.com/pdfs/gaceta/gm-2007/gm071k.pdf
Cederberg, J., Galli, J., Luthman, H., & Eriksson, U.J. (2000). Increased mRNA levels of Mn-SOD and catalase in embryos of diabetic rats from a malformation-resistant strain. Diabetes, 49(1), 101-107. https://doi.org/10.2337/diabetes.49.1.101
Cederberg, J., Simán, C.M., & Eriksson, U. (2001). Combined treatment with vitamin E and Vitamin C, decreases oxidative stress and improves fetal outcome in experimental diabetic pregnancy. Pediatric Research, 49: 755-762. https://doi.org/10.1203/00006450-200106000-00007
Centers for Disease Control and Prevention. (2008). Update on overall prevalence of major birth defects - Atlanta, Georgia, 1978-2005. Morbidity Mortality Weekly Report, 57, 1-5. PMID: 18185492
Chen, l., Zhand, J., Li, C., Wang, Z., Li, J., Zhao, D., Wang, S., Zhang, H., Huang, Y., & Guo, X. (2018). Glycine Transporter-1 and glycine receptor mediate the antioxidant effect of glycine in diabetic rat islets and INS-1 cells. Free Radicals in Biology and Medicine,123, 53-61. https://doi.org/10.1016/j.freeradbiomed.2018.05.007
Chirino-Galindo, G., Barrera-Argüelles, J.I., Trejo-González, N.L., Mejía-Zepeda, R., & Palomar-Morales, M. (2017). Biphasic effect of alpha-linolenic acid on glucose-induced dysmorphogenesis and lipoperoxidation in whole rat embryo in culture. Biochemical and Biophysical Research Communications, 484(4), 878-883. https://doi.org.10.1016/j.bbrc.2017.02.011
Chirino-Galindo, G., López-Quintero, I.V., Ramírez-Domínguez, L.B., Cabrera-Nájera, L.E., Estrella-Parra, E.A., García-Bores, A.M., & Palomar-Morales, M. (2021). Verbascoside-enriched fraction from Buddleja cordata Kunth ameliorates the effects of diabetic embryopathy in an animal model. Birth Defects Research, 113(12), 981–994. https://doi.org/10.1002/bdr2.1894
El-Bassiouni, E.A., Helmy, M.H., Rawash, N.A., El-Zoghby, S.M., Kamel, M.A.E., & Rayah, A.N.A. (2005). Embryopathy in experimental diabetic gestation: assessment of PGE2 level, gene expression of cyclooxigenases and apoptosis. British Journal of Biomedical Science, 62(4), 161-165. https://doi.org/10.1080/09674845.2005.11732704
El-Hafidi, M., Franco, M., Ruiz, R.M., Santamaría, S.J., Pineda, F.J.A., López, A.O., Chávez, S.M., & Cardoso-Saldaña, G. (2018) Glycine increases insulin sensitivity and glutathione biosynthesis and protects against oxidative stress in a model of sucrose-induced insulin resistance. Oxidative Medicine and Cellular Longevity, 2018, 2101562. https://doi.org/10.1155/2018/2101562
Eriksson, U.J., & Wentzel, P. (2015). The status of diabetic embryopathy. Upsala Journal of Medical Science, 121(2), 96-112. https://doi.org/10.3109/03009734.2016.1165317
Ejdesjó, A., Wentzel, P., & Eriksson, U.J. (2011). Genetic and environmental influence on diabetic rat embryopathy. American Journal of Physiology Endocrinology and Metabolism, 300(3), E454-E467. https://doi.org/10.1152/ajpendo.00543.2010
Flores, C., Márquez, Y., Lopez-Ortega, Mendoza, C., Colmenarez, V., & Salas, Y. (2006). Caracterización de la diabetes mellitus experimental inducida con estreptozotocina en ratones nmri. Gaceta de Ciencias Veterinarias, 12(1), 13-18. http://www.ucla.edu.ve/dveterin/departamentos/CienciasBasicas/gcv/2530int2530er2530no/articulos/documasp/~8dlf9vt2.pdf
Freinkel, N., Dooley, S.L., & Metzger, B.E. (1985). Care of the pregnant woman with insulin-dependent diabetes mellitus. New England Journal of Medicine, 313(29), 96-101. https://doi.org/10.1056/NEJM198507113130206
Freinkel, N. (1980). Banting lecture 1980: of pregnancy and progeny. Diabetes, 29(12), 1023-1035. https://doi.org/10.2337/diab.29.12.1023
Golob, E.K., Rishi, S., Becker, K.L., & Moore, C. (1970). Streptozotocin diabetes in pregnant and nonpregnant rats. Metabolism, 19(12), 1014-1970. https://doi.org/10.1016/0026-0495(70)90024-7
Guía de Práctica Clínica. (2009). Diagnóstico y Tratamiento de la Diabetes en el Embarazo. Secretaría de Salud, México. https://www.cenetec.salud.gob.mx/interior/gpc.htm
Guney, M., Erdemoglu, E., Mungan, T. (2011). Selenium–Vitamin E combination and melatonin modulates diabetes-induced blood oxidative damage and fetal outcomes in pregnant rats. Biological Trace Elements Research, 143, 1091-1102. https://doi.org/10.1007/s12011-010-8951-3
Kamimoto, Y., Sugiyama, T., Kihira, T., Zhang, L., Murabayashi, N., Umekawa, T., Nagao, K., Ma, N., Toyoda, N., Yodoi, J., & Sagawa, N. (2010). Transgenic mice overproducing human thioredoxin-1, an antioxidative and anti-apoptotic protein, prevents diabetic embryopathy. Diabetologia, 53, 2046-2055. https://doi.org/10.1007/s00125-010-1784-y
Kumar, S.D., Vijaya, M., Samy, R.P., Dhen, S.T., Ren, M., Watt, F., Kang, Y.J., Bay, B.H., & Tay, S.S.W. (2012). Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radicals in Biology and Medicine, 53(8), 1595-1606. https://doi.org/10.1016/j.freeradbiomed.2012.07.008
Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Martínez-Angoa, A., Parra-Hernández, E., Madrigal-Bujaidar, E., Chamorro-Cevallos, G., Carvajal-Sandoval, G., & Zamudio-Cortes, P. (2006). Reduction of all-trans-retinoic acid-induced teratogenesis in the rat by glycine administration. Birth Defects Research A: Clinical and Molecular Teratology, 76(10), 731-738. https://doi.org/10.1002/bdra.20309
Martínez-Galero, E., Paniagua-Castro, N., Pérez-Pastén, R., Madrigal-Bujaidar, E., & Chamorro-Cevallos, G. (2008). Glycine decreases developmental damage induced by hyperglycaemia in mouse embryos. Journal of Pharmacy and Pharmacology, 60, 895-900. https://doi.org/10.1211/jpp.60.7.001
Méndez, J.D., & Palomar-Morales, M. (1999). Prevention by L-arginine and polyamines of delayed development and embryotoxicity caused by chemically-induced diabetes in rats. Reproductive Toxicology, 13(6), 501-509. https://doi.org/10.1016/s0890-6238(99)00039-8
Ohkawa, H., Ohishi, N., & Yagi. K. (1979). Assay for lipid in animal tissues for thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
Ornoy, A., Zaken, V., & Kohen, R. (1999). Role of reactive oxygen species (ROS) in the diabetes-induced anomalies in rat embryos in vitro: reduction in antioxidant enzymes and low-molecular-weight antioxidants (LMWA) may be the causative factor for increased anomalies. Teratology, 60(6), 376-386. https://doi.org/10.1002/(SICI)1096-9926(199912)60:6<376::AID-TERA10>3.0.CO;2-Q
Paglia, E.D., & Valentine, N.W. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158-168. PMID: 6066618.
Paniagua-Castro, N., Escalona-Cardoso, G., & Chamorro-Cevallos, G. (2006). Glycine reduces cadmium-induced teratogenic damage in mice. Reproductive Toxicology, 23(1), 92–97. https://doi.org/10.1016/j.reprotox.2006.08.011
Pérez-Torres, I., Zúñiga-Monroy, A.M., & Guarner-Lans, V. (2017). Beneficial effects of the amino acid glycine. Mini Reviews in Medicine and Chemistry, 17, 15-32. https://doi.org/10.2174/1389557516666160609081602
Razak, M.A., Begum, P.S., Viswanath, B., & Rajagopal, S. (2017). Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxidative Medicine and Cellular Longivity, 2017(1), 1716701. https://doi.org/10.1155/2017/1716701
Rodrigues, B., Poucheret, P., Battell, M.L., & McNeill, J.H. (1999). Streptozotocin-induced diabetes: induction, mechanism(s) and dose dependency, In: McNeill JH. Experimental models of diabetes (pp. 3-17). Ed. CRC Press.
Ryu, S., Kohen, R., Samuni, A., & Ornoy, A. (2007). Nitroxide radicals protect cultured rat embryos and yolk sacs from diabetic-induced damage. Birth Defects Research A: Clinical and Molecular Teratology, 79(8), 604-611. https://doi.org/10.1002/bdra.20383
Singh, C.K., Kumar, A., Hitchcock, D.B., Goodwin, R., LaWoie, H.A., Nagarkatti, P., & Singh, U.S. (2011). Resveratrol prevents embryonic oxidative stress and apoptosis associate with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Molecular Nutrition and Food Research, 55(8), 1186-1196. https://doi.org/10.1002/mnfr.201000457
Sybulski, S., & Maughan, G.B. (1971). Use of streptozotocin as diabetic agent in pregnant rats. Endocrinology, 89(6), 1537-1540. https://doi.org/10.1210/endo-89-6-1537
Tsuchida, S. (1999). Glutathione transferase. In: Taniguchi, N., Gutteridge, J.M.C. Experimental protocols for reactive oxygen and nitrogen species (pp. 83-85). Ed. Oxford University Press.
Wentzel, P., Ejdesjó, A., & Eriksson, U.J. (2003). Maternal diabetes in vivo and high glucose in vitro diminish GADPH activity in rat embryos. Diabetes, 52(5), 1222-1228. https://doi.org/10.2337/diabetes.52.5.1222
Wentzel, P. & Eriksson, U.J. (2005). A diabetes-like environment increases malformation rate and diminishes prostaglandin E2 in rat embryos: reversal by administration of vitamin E and folic acid. Birth Defects Research, (Part A) 73, 506–511
Wentzel, P., Gäreskog, M., & Eriksson, U.J. (2008). Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes, 57(12), 3344-3352. https://doi.org/10.2337/db08-0830
Wu, Y., Wang, F., Reece, E.A., & Yang, P. (2015). Curcumin ameliorates high glucose-induced neural tube defects by suppressing cellular stress and apoptosis. American Journal of Obstetrics and Gynecology, 212(6), 802.e1-8. https://doi.org/10.1016/j.ajog.2015.01.017
Zabihi, S., Eriksson, U.J., & Wentzel, P. (2007). Folic acid supplementation affects ROS scavenging enzymes, enhances Vegf-A, and diminishes apoptotic state in yolk sacs of embryos of diabetic rats. Reproductive Toxicology, 23(4), 486-498. https://doi.org/10.1016/j.reprotox.2007.03.007
Zaken, V., Kohen, R., & Ornoy, A. (2001). Vitamins C and E improve rat embryonic antioxidant defense mechanism in diabetic culture medium. Teratology, 64(1), 33-44. https://doi.org/10.1002/tera.1045
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional