Resumen
La maduración in vitro de ovocitos es un proceso crucial para la producción in vitro de embriones, tecnología que aún presenta desafíos para alcanzar su potencial. El objetivo fue evaluar la adición de α-tocoferol en la maduración in vitro de ovocitos y en el desarrollo embrionario subsecuente. Se utilizaron 1,019 ovocitos bovinos, clasificados como de alta y baja calidad, suplementados con etanol y α-tocoferol a 100, 200, y 400 µM/mL durante la maduración in vitro, midiendo las tasas de maduración, escisión, blastulación y expansión del blastocito. La maduración fue mayor en ovocitos de alta calidad (p < 0.01). La tasa de escisión y el porcentaje de blastocitos expandidos fueron superiores en embriones de ovocitos de alta calidad (EOAC) adicionados con 400 μL (p < 0.05). La tasa de blastulación fue menor en EOAC adicionados con etanol y 100 µM/mL (p < 0.05). En conclusión, los ovocitos de alta calidad exhibieron mayores tasas de maduración y desarrollo embrionario en comparación a los de baja calidad. El α-tocoferol a 400 μM/mL incrementó la tasa de escisión y de blastocitos expandidos en EOAC. El etanol redujo la blastulación de EOAC, lo cual fue mitigado por la adición de 200 y 400 μM/mL de α-tocoferol.
Citas
Acosta-Pérez, T. P. (2020). Effect of the addition of α-tocopherol to in vitro maturation media of bovine oocytes. Journal of Animal Science, 98 (Suppl. 2), 2–3. https://doi.org/10.1093/jas/skz397.005
Angel, T. R., & Mahendran, S. A. (2024). Comparison of manual and automated body condition scoring of commercial dairy cattle. Veterinary Record, 195 (7), e4535. https://doi.org/10.1002/vetr.4535
Avery, B., & Greve T. (2000). Effects of ethanol and dimethylsulphoxide on nuclear and cytoplasmic maturation of bovine cumulus-oocyte complexes. Molecular Reproduction and Development, 55, 438–445. https://doi.org/10.1002/(SICI)1098-2795(200004)55:4<438::AID-MRD12>3.0.CO;2-Y
Azam, A., Ejaz, R., Qadeer, S., Irum, S., Ul-Husna, A., Ullah, S., Shahzad, Q., Akhtar, T., & Akher, S. (2024). Synergistic impact of α-linolenic acid and α-tocopherol on in vitro maturation and culture of buffalo oocytes. Brazilian Journal of Biology, 84, e253514. https://doi.org/10.1590/1519-6984.253514
Báez, F., Gómez, B., de Brun, V., Rodríguez-Osorio, N., & Viñoles, C. (2021). Effect of ethanol on parthenogenetic activation and α-Tocopherol supplementation during in vitro maturation on developmental competence of summer-collected bovine oocytes. Current Issues in Molecular Biology, 43, 2253–2265. https://doi.org/10.3390/cimb43030158
Caixeta, E. S., Sutton-McDowall, M. L., Gilchrist, R. B., Thompson, J. G., Price, C. A., Machado, M. F., Lima, P. F., & Buratini, J. (2013). Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction, 146 (1), 27-35. https://doi.org/10.1530/REP-13-0079
Cetica, P. D., Pintos, L. N., Dalvit, G. C., & Beconi, M. T. (2001). Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. Life, 51, 57-64. https://doi.org/10.1080/15216540152035073
Chowdhury, M. M. R., Choi, B. H., Khan, I., Lee, K. L., Mesalam, A., Song, S. H., Xu, L., Joo, M. D., Afrin, F., & Kong, I. K. (2017). Supplementation of lycopene in maturation media improves bovine quality in vitro. Theriogenology, 103, 173-184. https://doi.org/10.1016/j.theriogenology.2017.08.003
Dalvit, G., Llanes, S. P., Descalzo, A., Insani, M., Beconi, M., & Cetica, P. (2005). Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Reproduction in Domestic Animals, 40(2), 93-97. https://doi.org/10.1111/j.1439-0531.2004.00522.x
de Vasconcelos, F. J. S., Faheem, M., Chaveiro, A., & Moreira da Silva, F. (2016). Effects of α-tocopherol and freezing rates on the quality and heterologous in vitro fertilization capacity of stallion sperm after cryopreservation. Theriogenology, 86, 957-962. https://doi.org/10.1016/j.theriogenology.2016.03.019
Deleuze, S., & Goudet, G. (2010). Cysteamine supplementation of in vitro maturation media: a review. Reproduction in Domestic Animals, 45, 476-482. https://doi.org/10.1111/j.1439-0531.2010.01587.x
Engin, K. N. (2009). Alpha-tocopherol: looking beyond an antioxidant. Molecular Vision, 15, 55-860. http://www.molvis.org/molvis/v15/a88
Fabra, M. C., Izquierdo, I., Anchordoquy, J. M., Anchordoquy, J. P., Carranza-Martín, A. C., Nikoloff, N., & Furnus, C. C. (2020). Effect of alpha-lipoic acid during preimplantation development of cattle embryos when there were different in vitro culture conditions. Animal Reproduction Science, 221, 106550. https://doi.org/10.1016/j.anireprosci.2020.106550
Farghaly, T., Khalifa, E., Mostafa, S., Hussein, M., Bedaiwy, M., & Ahmady, A. (2015). The effect of temporary meiotic attenuation on the in vitro maturation outcome of bovine oocytes. In Vitro Cellullar and Developmental Biology – Animal, 51, 662-671. https://doi.org/10.1007/s11626-015-9878-y
Hossein, M. S., Hashem, M. D. A., Jeong, Y. W., Lee, M. S., Kim, S., Kim, J. H., Koo, O. J., Park, S. M., Lee, E. G., Park, S. W., Kang, S. K., Lee, B. C., & Hwang, W. S. (2007). Temporal effects of α-tocopherol and l-ascorbic acid on in vitro fertilized porcine embryo development. Animal Reproduction Science, 100, 107-117. https://doi.org/10.1016/j.anireprosci.2006.06.013
Jeong, Y. W., Park, S. W., Hossein, M. S., Kim, S., Kim, J. H., Lee, S. H., Kang, S. K., Lee, B. C., & Hwang, W. S. (2006). Antiapoptotic and embryotrophic effects of α-tocopherol and ι-ascorbic acid on porcine embryos derived from in vitro fertilization and somatic cell nuclear transfer. Theriogenology, 66, 2104-2112. https://doi.org/10.1016/j.theriogenology.2006.06.007
Jiménez-Aguilar, E., Quezada-Casasola, A., Prieto-Caraveo, M., Orozco-Lucero, E., Itzá-Ortiz, M., & Carrera-Chávez, J. (2021). Evaluation of the addition of quercetin and vitamin E to the cryopreservation medium of ram semen on in vivo fertility. Abanico Veterinario, 11, 1-14. http://dx.doi.org/10.21929/abavet2021.36
Kala, M., Vaseem, S. M., & Nivsarkar M. (2017). Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reproductive Medicine and Biology, 16, 28-35. https://doi.org/10.1002/rmb2.12013
Khan, I., Chowdhury, M. M. R., Song, S. H., Mesalam, A., Zhang, S., Khalil A. A. K., Jung E. H., Kim, J. B., Jafri, L., Mirza, B., & Kong I. K. (2017). Lupeol supplementation improves the developmental competence of bovine embryos in vitro. Theriogenology, 107, 203-210. https://doi.org/10.1016/j.theriogenology.2017.11.017
Kimura, K., Spate, L. D., Green, M. P., & Roberts, R. M. (2004). Effects of oxidative stress and inhibitors of the pentose phosphate pathway on sexually dimorphic production of IFN-τ by bovine blastocysts. Molecular Reproduction and Development, 68, 88-95. https://doi.org/10.1002/mrd.20053
Krisher, R. L., & Herrick, J. R. (2024) Bovine embryo production in vitro: evolution of culture media and commercial perspectives. Animal Reproduction, 21(3) e20240051. https://doi.org/10.1590/1984-3143-AR2024-0051
Lonergan, P., & Fair, T. (2014). The ART of studying early embryo development: Progress and challenges in ruminant embryo culture. Theriogenology, 81, 49-55. https://doi.org/10.1016/j.theriogenology.2013.09.021
Marei, W. F., Abayasekara, D. R. E., Wathes, D. C., & Fouladi-Nashta, A. A. (2014). Role of PTGS2-generated PGE2 during gonadotrophin-induced bovine oocyte maturation and cumulus cell expansion. Reproductive BioMedicine Online, 28, 388-400. https://doi.org/10.1016/j.rbmo.2013.11.005
Naspinska, R., Moreira da Silva, M. H., & Moreira da Silva, F. (2023). Current advances in bovine in vitro maturation and embryo production using different antioxidants: a review. Journal of Developmental Biology, 11(3), 36. https://doi.org/10.3390/jdb11030036
Nogueira da Costa, N., Brito, K. N. L., Santana, P. P. B., Cordeiro, M. S., Silva, T. V. G. Santos, A. X., Ramos, P. C., Santos, S. S. D., King, W. A., Miranda, M. S., & Ohashi O. M. (2015). Effect of cortisol on bovine oocyte maturation and embryo development in vitro. Theriogenology, 85, 323-329. https://doi.org/10.1016/j.theriogenology.2015.08.010
Olson, S. E., & Seidel, G. E. (2000). Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biology of Reproduction, 62, 248-52. https://doi.org/10.1095/biolreprod62.2.248
Peippo, J., Machaty, Z., & Peter, A. (2011). Terminologies for the pre-attachment bovine embryo. Theriogenology, 76 (8), 1373-1379. https://doi.org/10.1016/j.theriogenology.2011.06.018
Rakha, S.I., Elmetwally, M.,A., El-Sheikh Ali, H., Balboula, A., Mahmoud, A.,M., & Zaabel, S.,M. (2022). Importance of antioxidant supplementation during in vitro maturation of mammalian oocytes. Veterinary Sciences, 9, 439. https://doi.org/10.3390/vetsci9080439
Reis, A., Rooke, J. A., McCallum, G. J., Staines, M.E., Ewen, M. Lomax, M.A., & McEvoy, T.G. (2003). Consequences of exposure to serum, with or without vitamin E supplementation, in terms of the fatty acid content and viability of bovine blastocysts produced in vitro. Reproduction, Fertility and Development, 15, 275-284. https://doi.org/10.1071/RD03004
Remião, M. H., Lucas, C. G., Domingues, W. B., Silveira, T., Barther, N. N. Komninou, E. R., Basso, A. C., Jornada, D. S., Beck, R. C. R., Pohlmann, A. R., Junior, A. S. V., Seixas, F. K., Campos, V. F., Guterres, S. S., & Collares T. (2016). Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxigen species of oocytes and embryos. Reproductive Toxicology, 63, 70-81. https://doi.org/10.1016/j.reprotox.2016.05.016
Rocha-Frigoni, N. A. S., Leao, B. C. S., Dall'Acqua, P. C., & Mingoti, G. Z. (2016). Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracelular and/or extracelular antioxidants is not associated with increased rates of embryo development. Theriogenology, 86, 1897-1905. https://doi.org/10.1016/j.theriogenology.2016.06.009
Schoots, M. H., Gordijn, S. J., Scherjon, S. A., van Goor, H., & Hillebrands J. L., (2018). Oxidative stress in placental pathology. Placenta, 69, 153-161. https://doi.org/10.1016/j.placenta.2018.03.003
Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Goncalves, P. B., & Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction, 64, 904-909. https://doi.org/10.1095/biolreprod64.3.904
Takahashi, M. (2012). Oxidative stress and redox regulation on in vitro development of mammalian embryos. Journal of Reproduction and Development, 58, 1-9. https://doi.org/10.1262/jrd.11-138N
Tsvetkov, T., Petrova, N., Blagova, H., Daskalova, D., Vitanova, D., & Shumkova, R. (2023). Effectiveness of glycerol, DMSO and trehalose in the process of cryopreservation of drone semen from the species Apis mellifera. Science, Engineering and Education, 8(1), 21-28. https://doi.org/10.59957/see.v8.i1.2023.2
Tripathi, S. K., Nandi, S., Gupta, P. S. P., & Mondal, S. (2023). Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology, 201, 41-52. https://doi.org/10.1016/j.theriogenology.2022.11.048
Van Nguyen, V., Ponchunchoovong, S., Kupittayanant, S., & Kupittayanant, P. (2023). Effects of green tea polyphenols, vitamin E, and Ocimum gratissimum leaf essential oils as a supplement to extender on chilled canine sperm quality. Advances in Animal and Veterinary Sciences, 11(8). https://doi.org/10.17582/journal.aavs/2023/11.8.1250.1260
Vásquez, N. A., Torres, V., & Rojano, B.A. (2014). Efecto del ácido ascórbico durante maduración in vitro de oocitos bovinos en la producción de especies reactivas de oxígeno (ERO) y competencia para el desarrollo embrionario. Información Tecnológica, 25, 141-150. https://doi.org/10.4067/S0718-07642014000200016
Vijayalakshmi, K.S., Sathisha, K. B., Yathish, H. M., Girish, M. H., Naveen Kumar, G. S., Bijurkar, R. G., & Kartikesh, S. M. (2020). Effect of alpha-Tocopherol supplementation in TCM199 medium on in vitro maturation and cleavage of buffalo oocytes. The Indian Journal of Veterinary Sciences and Biotechnology, 15(4), 66-70. https://www.cabidigitallibrary.org/doi/full/10.5555/20210049039
Wang, X., Falcone, T., Attaran, M., Goldberg, J. M., Agarwal, A., & Sharma, R. K. (2002). Vitamin C and vitamin E supplementation reduce oxidative stress-induced embryo toxicity and improve the blastocyst development rate. Fertility and Sterility, 78, 1272-1277. https://doi.org/10.1016/S0015-0282(02)04236-X
Zhang, K., Hansen, P. J., & Ealy, A. D. (2010). Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction, 140 (6), 815-826. https://doi.org/10.1530/REP-10-0190
Zhang, W., Yi, K., Yan, H., & Xu, Z. (2012). Advances on in vitro production and cryopreservation of porcine embryos. Animal Reproduction Science, 132, 115-122. https://doi.org/10.1016/j.anireprosci.2012.05.008
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional