Resumen
Este estudio teórico examina el impacto de la agregación molecular en la adsorción multicomponente de productos farmacéuticos. Se seleccionaron acetaminofeno, diclofenaco y naproxeno. Se realizaron cálculos de Teoría del Funcional de la Densidad para analizar la viabilidad termodinámica de la formación de dímeros y trímeros, tanto homogéneos como heterogéneos. Los análisis del potencial electrostático molecular y el descriptor dual proporcionaron información sobre los sitios reactivos y la estabilidad de estos agregados. Los resultados indican que la formación de dímeros es termodinámicamente favorable, particularmente para NAP. Las energías e interacciones calculadas para dímeros y trímeros ofrecen una comprensión cuantitativa del comportamiento de agregados. Este estudio teórico revela cómo la agregación molecular influye en la adsorción competitiva de fármacos, proporcionando información crucial para el diseño de estrategias más efectivas de tratamiento de aguas.
Citas
Catella-Lawson, F., Reilly, M. P., Kapoor, S. C., Cucchiara, A. J., DeMarco, S., Tournier, B., … & FitzGerald, G. A. (2001). Catella-Lawson, F., Reilly, M. P., Kapoor, S. C., Cucchiara, A. J., DeMarco, S., Tournier, B., … & FitzGerald, G. A. (2001). Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. New England Journal of Medicine, 345(25), 18009-1817. https://doi.org/10.1056/NEJMoa003199
Cossi, M., Barone, V., Cammi, R., & Tomasi, J. (1996). Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chemical Physics Letters, 255(4-6), 327-335. https://doi.org/10.1016/0009-2614(96)00349-1
Deb, P. K., Mailabaram, R. P., Al-Jaidi, B., & Saadh, M. (2017). Molecular basis of biniding interactions of NSAIDs and computeraided drug design approaches in the pursuit of the development of cyclooxygenase-2 (COX-2) selective inhibitors. Nonsteroidal Anti-Inflammatory Drugs, 2, 64. http://dox.doi.org/10.5772/intechopen.68318
DellaGreca, M., Brigante, M., Isidori, M., Nardelli, A., Previtera, L., Rubino, M., & Temussi, F. (2003). Phototransformation and ecotoxicity of the drug Naproxen-Na. Environmental Chemistry Letters, 1, 237-241. https://doi.org/10.1007/s10311-003-0045-4
Dhiman, N., & Sharma, N. (2019). Removal of pharmaceutical drugs from binary mixtures by use of ZnO nanoparticles:(Competitive adsorption of drugs). Environmental technology & innovation, 15, 100392. https://doi.org/10.1016/j.eti.2019.100392
Duarte, B., Gameiro, C., Matos, A. R., Figueiredo, A., Silva, M. S., Cordeiro, C., & Cabrita, M. T. (2021). First screening of biocides, persistent organic pollutants, pharmaceutical and personal care products in Antarctic phytoplankton from Deception Island by FT-ICR-MS. Chemosphere, 274, 129860. https://doi.org/10.1016/j.chemosphere.2021.129860
Duarte, E. D., Oliveira, M. G., Spaolonzi, M. P., Costa, H. P., da Silva, T. L., da Silva, M. G., & Vieira, M. G. (2022). Adsorption of pharmaceutical products from aqueous solutions on functionalized carbon nanotubes by conventional and green methods: A critical review. Journal of Cleaner Production, 372, 133743. https://doi.org/10.1016/j.jclepro.2022.133743
Dwivedi, A.K., Gurjar, V., Kumar, S., & Singh, N. (2015). Molecular basis for nonspecificity of nonsteroidal anti-inflammatory drugs (NSAIDs). Drug discovery today, 20(7), 863-873. https://doi.org/10.1016/j.drudis.2015.03.004
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2016). Gaussian16 rev, Gaussian Inc., Wallingford, CT, USA, 2016.
Gęca, M., Wiśniewska, M., & Nowicki, P. (2022). Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems–A review. Advances in Colloid and Interface Science, 305, 102687. https://doi.org/10.1016/j.cis.2022.102687
Giles, C.H., MacEwan, T.H., Nakhwa, S.N., & Smith, D. (1970). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanism an in measurement of specific surfaces areas of solids. Journal of the Chemical Society. 3873-3993.
Gómez-Avilés, A., Sellaoui, L., Badawi, M., Bonilla-Petriciolet, A., Bedia, J., & Belver, C. (2021). Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling. Chemical engineering journal, 404, 126601. https://doi.org/10.1016/j.cej.2020.126601
Gómez-Canela, C., Sala-Comorera, T., Pueyo, V., Barata, C., & Lacorte, S. (2019). Analysis of 44 pharmaceuticals consumed by elderly using liquid chromatography coupled to tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 168, 55-63. https://doi.org/10.1016/j.jpba.2019.02.016
Huang, C., Jin, B., Han, M., Yu, Y., Zhang, G., & Arp, H. P. H. (2021). The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources. Journal of Hazardous Materials Letters, 2, 100026. https://doi.org/10.1016/j.hazl.2021.100026
Joseph, L., Heo, J., Park, Y. G., Flora, J. R., & Yoon, Y. (2011). Adsorption of bisphenol A and 17α-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water. Desalination, 281, 68-74. https://doi.org/10.1016/j.desal.2011.07.044
Karami, A., Sabouni, R., & Ghommem, M. (2020). Experimental investigation of competitive co-adsorption of naproxen and diclofenac from water by an aluminum-based metal-organic framework. Journal of Molecular Liquids, 305, 112808. https://doi.org/10.1016/j.molliq.2020.112808
Kebede, T. G., Dube, S., & Nindi, M. M. (2019). Biopolymer electrospun nanofibres for the adsorption of pharmaceuticals from water systems. Journal of Environmental Chemical Engineering, 7(5), 103330. https://doi.org/10.1016/j.jece.2019.103330
King, M. D., Buchanan, W. D., & Korter, T. M. (2011). Identification and quantification of polymorphism in the pharmaceutical compound diclofenac acid by terahertz spectroscopy and solid-state density functional theory. Analytical chemistry, 83(10), 3786-3792. https://doi.org/10.1021/ac2001934
Kozlowska, M., Rodziewicz, P., Utesch, T, Mroginski, M. A., & Kaczmarek-Kedziera, A. (2018). Solvation of diclofenac in water from atomistic molecular dynamics simulations–interplay between solute–solute and solute–solvent interactions. Physical Chemistry Chemical Physics, 20(13), 8629-8639. https://doi.org/10.1039/C7CP08468D
Kyzas, G. Z., Kostoglou, M., Lazaridis, N. K., Lambropoulou, D. A., & Bikiaris, D. N. (2013). Environmental friendly technology for the removal of pharmaceutical contaminants from wastewaters using modified chitosan adsorbents. Chemical Engineering Journal, 222, 248-258. https://doi.org/10.1016/j.cej.2013.02.048
Manjunath, S. V., & Kumar, M. (2018). Evaluation of single-component and multi-component adsorption of metronidazole, phosphate and nitrate on activated carbon from Prosopıs julıflora. Chemical Engineering Journal, 346, 525-534. https://doi.org/10.1016/j.cej.2018.04.013
Manjunath, S. V., Baghel, R. S., & Kumar, M. (2020). Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems. Chemical Engineering Journal, 381, 122713. https://doi.org/10.1016/j.cej.2019.122713
Martínez-Costa, J. I., Leyva-Ramos, R., Padilla-Ortega, E., Aragón-Piña, A., & Carrales-Alvarado, D. H. (2018). Antagonistic, synergistic and non-interactive competitive sorption of sulfamethoxazole-trimethoprim and sulfamethoxazole‑cadmium (ii) on a hybrid clay nanosorbent. Science of the Total Environment, 640, 1241-1250. https://doi.org/10.1016/j.scitotenv.2018.05.399
Medina, F. M. O., Aguiar, M. B., Parolo, M. E., & Avena, M. J. (2021). Insights of competitive adsorption on activated carbon of binary caffeine and diclofenac solutions. Journal of Environmental Management, 278, 111523. https://doi.org/10.1016/j.jenvman.2020.111523
Minecka, A., Kaminska, E., Tarnacka, M., Grudzka-Flak, I., Bartoszek, M., Wolnica, K., & Paluch, M. (2018). Impact of intermolecular interactions, dimeric structures on the glass forming ability of naproxen, and a series of its derivatives. Molecular pharmaceutics, 15(10), 4764-4776. https://doi.org/10.1021/acs.molpharmaceut.8b00725
Mlunguza, N. Y., Ncube, S., Mahlambi, P. N., Chimuka, L., & Madikizela, L. M. (2019). Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. Journal of Environmental Chemical Engineering, 7(3), 103142. https://doi.org/10.1016/j.jece.2019.103142
Momma, K., & Izumi, F., (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276. https://doi.org/10.1107/S0021889811038970
Morell, C., Grand, A., & Toro-Labbé, A. (2005). New dual descriptor for chemical reactivity. The journal of physical chemistry A, 109(1), 205-212. https://doi.org/10.1021/jp046577a
Nematollahi, D., Shayani-Jam, H., Alimoradi, M., & Niroomand, S. (2009). Electrochemical oxidation of acetaminophen in aqueous solutions: Kinetic evaluation of hydrolysis, hydroxylation and dimerization processes. Electrochimica Acta, 54(28), 7407-7415. https://doi.org/10.1016/j.electacta.2009.07.077
Nghiem, L. D., & Fujioka, T. (2016). Removal of emerging contaminants for water reuse by membrane technology. Emerging membrane technology for sustainable water treatment, 217-247. https://books.google.com.mx/books?hl=es&lr=&id=HbR0BgAAQBAJ&oi=fnd&pg=PA217&dq=Nghiem,+L.+D.,+%26+Fujioka,+T.+(2016).+Removal+of+emerging+contaminants+for+water+reuse+by+membrane+technology.+Emerging+membrane+technology+for+sustainable+water+treatment,+217-247.&ots=80bOrBb-2e&sig=ju-9jGi6ligNAa54hwbOJlCZSCg&redir_esc=y#v=onepage&q&f=false
Nielsen, L., & Bandosz, T. J. (2016). Analysis of the competitive adsorption of pharmaceuticals on waste derived materials. Chemical Engineering Journal, 287, 139-147. https://doi.org/10.1016/j.cej.2015.11.016
Passerat, J., Ouattara, N. K., Mouchel, J. M., Rocher, V., & Servais, P. (2011). Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River. Water research, 45(2), 893-903. https://doi.org/10.1016/j.watres.2010.09.024
Pauletto, P. S., Lütke, S. F., Dotto, G. L., & Salau, N. P. G. (2021). Forecasting the multicomponent adsorption of nimesulide and paracetamol through artificial neural network. Chemical Engineering Journal, 412, 127527. https://doi.org/10.1016/j.cej.2020.127527
Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of environmental management, 237, 408-423. https://doi.org/10.1016/j.jenvman.2019.02.100
Puga, A., Moreira, M. M., Pazos, M., Figueiredo, S. A., Sanromán, M. Á., Delerue-Matos, C., & Rosales, E. (2022). Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar. Journal of Environmental Chemical Engineering, 10(1), 106977. https://doi.org/10.1016/j.jece.2021.106977
Rodríguez‐Ropero, F., Casanovas, J., & Alemán, C. (2008). Ab initio calculations on π‐stacked thiophene dimer, trimer, and tetramer: Structure, interaction energy, cooperative effects, and intermolecular electronic parameters. Journal of computational chemistry, 29(1), 69-78. https://doi.org/10.1002/jcc.20763
Scheufele, F. B., Módenes, A. N., Borba, C. E., Ribeiro, C., Espinoza-Quiñones, F. R., Bergamasco, R., & Pereira, N. C. (2016). Monolayer–multilayer adsorption phenomenological model: Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 284, 1328-1341. https://doi.org/10.1016/j.cej.2015.09.085
Shao, Y., Molnar, L. F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., & Head-Gordon, M. (2006). Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 8(27), 3172-3191.
Schuijt, M. P., Huntjens-Fleuren, H. H. A., De Metz, M., & Vollaard, E. J. (2009). The interaction of ibuprofen and diclofenac with aspirin in healthy volunteers. British journal of pharmacology, 157(6), 931-934. https://doi.org/10.1111/j.1476-5381.2009.00243.x
Soto, R., Patel, P., Albadarin, A. B., Diniz, M. O., & Hudson, S. P. (2022). Solubility, aggregation and stability of Amphotericin B drug in pure organic solvents: Thermodynamic analysis and solid form characterization. Journal of Molecular Liquids, 366, 120276. https://doi.org/10.1016/j.molliq.2022.120276
Vargas-Berrones, K., Bernal-Jácome, L., de León-Martínez, L. D., & Flores-Ramírez, R. (2020). Emerging pollutants (EPs) in Latin América: A critical review of under-studied EPs, case of study-Nonylphenol. Science of the Total Environment, 726, 138493. https://doi.org/10.1016/j.scitotenv.2020.138493
Vener, M. V., Makhrov, D. E., Voronin, A. P., & Shalafan, D. R. (2022). Molecular Dynamics Simulation of Association Processes in Aqueous Solutions of Maleate Salts of Drug-like Compounds: The Role of Counterion. International Journal of Molecular Sciences, 23(11), 6302. https://doi.org/10.3390/ijms23116302
Villanueva-Mejia, F., Navarro-Santos, P., Rodríguez-Kessler, P. L., Herrera-Bucio, R., & Rivera, J. L. (2019). Reactivity of atomically functionalized C-doped boron nitride nanoribbons and their interaction with organosulfur compounds. Nanomaterials, 9(3), 452. https://doi.org/10.3390/nano9030452
Wang, Z., Ding, J., Razanajatovo, R. M., Huang, J., Zheng, L., Zou, H., & Liu, J. (2022). Sorption of selected pharmaceutical compounds on polyethylene microplastics: Roles of pH, aging, and competitive sorption. Chemosphere, 307, 135561. https://doi.org/10.1016/j.chemosphere.2022.135561
Zango, Z. U., Jumbri, K., Sambudi, N. S., Bakar, H. H. A., Garba, Z. N., Isiyaka, H. A., & Saad, B. (2021). Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron, 210, 115515. https://doi.org/10.1016/j.poly.2021.115515
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional