Resumen
El desarrollo de formulaciones microbianas de estabilidad a largo plazo es esencial para avanzar en el uso de comunidades bacterianas sintéticas (SynComs) en biotecnología agrícola. En este estudio, se caracterizó la vida útil de una SynCom integrada por Bacillus cabrialesii subsp. cabrialesii TE3T, Bacillus paralicheniformis TRQ65 y Priestia megaterium TRQ8. La SynCom cofermentada alcanzó una densidad final de 1.60 × 10⁹ CFU/mL con una esporulación eficiente (100%). Los ensayos de estabilidad a corto plazo (30 días) revelaron que la trehalosa y la polivinilpirrolidona (PVP) mantuvieron la viabilidad de las esporas; sin embargo, ninguno de estos aditivos mejoró significativamente la estabilidad en comparación con la formulación sin aditivos. Por lo tanto, la evaluación del almacenamiento a largo plazo (12 meses, a 23.8 ± 1,7 °C) mostró una alta estabilidad de la SynCom, manteniendo una alta viabilidad de las esporas, 92%. Este hallazgo se sustenta en los genomas de estas bacterias que revelaron mecanismos conservados de tolerancia al estrés oxidativo y osmótico, incluyendo enzimas antioxidantes, transportadores de solutos compatibles y la biosíntesis de PHB. Estas características intrínsecas de respuesta al estrés probablemente contribuyan a la vida útil extendida de la SynCom cofermentada. En general, esta SynCom representa una estrategia prometedora para el desarrollo de formulaciones microbianas líquidas con una larga estabilidad en condiciones ambientales.
Citas
Aguirre, J. B. R., Gómez, L. Z. O., Villalobos, S. D. L. S., & Sánchez, M. L. (2017). Production of polyhydroxybutyrate from milk whey fermentation by Bacillus megaterium TRQ8. Revista Latinoamericana de Recursos Naturales, 13(1), 24–31. https://revista.itson.edu.mx/index.php/rlrn/article/view/261/194
Aninth, K. N., Vyshakhi, A., Shilpa, V., & Aswini, S. (2016). Population dynamics and efficiency of coconut water based liquid formulation of Pseudomonas fluorescens AMB-8. Journal of Tropical Agriculture, 54(2), 184–189.
Berninger, T., González López, Ó., Bejarano, A., Preininger, C., & Sessitsch, A. (2018). Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 11(2), 277–301. https://doi.org/10.1111/1751-7915.12880
COFEPRIS. (2025, Octubre 25). Consulta de Registros Sanitarios de Plaguicidas, Nutrientes Vegetales y LMR. https://siipris03.cofepris.gob.mx/resoluciones/consultas/conwebregplaguicida.asp
Conceição, F. R. S. da, Bessa, L. A., Teixeira, M. B., Cruvinel, B. G., & Vitorino, L. C. (2025). An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L. Agronomy, 15(7), 1668. https://doi.org/10.3390/agronomy15071668
Cristiano-Fajardo, S. A., Flores, C., Flores, N., Tinoco-Valencia, R., Serrano-Carreón, L., & Galindo, E. (2019). Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83. Journal of Biotechnology, 299, 57–65. https://doi.org/10.1016/j.jbiotec.2019.04.027
de Souza, R. S. C., Armanhi, J. S. L., & Arruda, P. (2020). From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. Frontiers in Plant Science, 11, 1179. https://doi.org/10.3389/fpls.2020.01179
Díaz-Rodríguez, A. M., Salcedo Gastelum, L. A., Félix Pablos, C. M., Parra-Cota, F. I., Santoyo, G., Puente, M. L., Bhattacharya, D., Mukherjee, J., & de los Santos-Villalobos, S. (2021). The Current and Future Role of Microbial Culture Collections in Food Security Worldwide. Frontiers in Sustainable Food Systems, 4, 614739. https://doi.org/10.3389/fsufs.2020.614739
Gotor-Vila, A., Usall, J., Torres, R., Abadias, M., & Teixidó, N. (2017). Formulation of the biocontrol agent Bacillus amyloliquefaciens CPA-8 using different approaches: liquid, freeze-drying and fluid-bed spray-drying. BioControl, 62(4), 545–555. https://doi.org/10.1007/s10526-017-9802-3
Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8859–8873. https://doi.org/10.1007/s00253-013-5228-8
Ibarra-Villarreal, A. L., Gándara-Ledezma, A., Godoy-Flores, A., Díaz-Rodríguez, A. M., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2021). Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum). Journal of Arid Environments, 186, 104399. https://doi.org/10.1016/j.jaridenv.2020.104399
Ibarra-Villarreal, A. L., Rojas-Padilla, J., Chaparro-Encinas, L. A., Díaz-Rodríguez, A. M., Valenzuela-Ruiz, V., Herrera-Sepúlveda, A., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2023). Soil salinity shifts cultivable microbial communities of wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. Agrociencia, 57(5), 882–919. https://doi.org/10.47163/agrociencia.v57i5.2882
Liang, J., Yang, F., Ding, Y., Zhang, X., Feng, D., & Ye, S. (2024). Batch fermentation kinetics study of biosynthesis lipopeptides by Bacillus altitudinis Q7 in 5 L fermenter. Process Biochemistry, 140, 96–107. https://doi.org/10.1016/j.procbio.2024.02.007
Liu, H., Qiu, Z., Ye, J., Verma, J. P., Li, J., & Singh, B. K. (2022). Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. Journal of Sustainable Agriculture and Environment, 1(1), 30–42. https://doi.org/10.1002/sae2.12008
Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255–267. https://doi.org/10.1016/S0959-3780(03)00054-2
Martínez-Álvarez, J. C., Castro-Martínez, C., Sánchez-Peña, P., Gutiérrez-Dorado, R., & Maldonado-Mendoza, I. E. (2016). Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology, 32(5), 75. https://doi.org/10.1007/s11274-015-2000-5
Mathot, A.-G., Leguérinel, I., Couvert, O., Postollec, F., Broussolle, V., & Coroller, L. (2016). Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Research in Microbiologoy, 168(4), 369–378. https://doi.org/10.1016/j.resmic.2016.10.006
Miller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 426–428.
Monteiro, S. M. S., Clemente, J. J., Carrondo, M. J. T., & Cunha, A. E. (2014). Enhanced Spore Production of Bacillus subtilis Grown in a Chemically Defined Medium. Advances in Microbiology, 4(8), 444–454. https://doi.org/10.4236/aim.2014.48049
Mordor Intelligence Research & Advisory. (2025). Agricultural Inoculants Market Size & Share Analysis—Growth Trends & Forecasts (2025—2030). https://www.mordorintelligence.com/industry-reports/agricultural-inoculants-market.
Niu, B., Paulson, J. N., Zheng, X., & Kolter, R. (2017). Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 114(12), E2450–E2459. https://doi.org/10.1073/pnas.1616148114
Pacheco, A. R., Moel, M., & Segrè, D. (2019). Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nature Communications, 10(103). https://doi.org/10.1038/s41467-018-07946-9
Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7(6), 579–586. https://doi.org/10.1016/j.mib.2004.10.001
Rath, H., Sappa, P. K., Hoffmann, T., Gesell Salazar, M., Reder, A., Steil, L., Hecker, M., Bremer, E., Mäder, U., & Völker, U. (2020). Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environmental Microbiology, 22(8), 3266–3286. https://doi.org/10.1111/1462-2920.15087
Robles-Montoya, R. I., Chaparro-Encinas, L. A., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2020). Improving biometric traits of wheat seedlings with the inoculation of a consortium native of Bacillus. Revista Mexicana Ciencias Agrícolas, 11(1), 229–235. https://doi.org/10.29312/remexca.v11i1.2162.
Robles-Montoya, R. I., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2019). Draft genome sequence of Bacillus megaterium TRQ8, a plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 9(5), 1–5. https://doi.org/10.1007/s13205-019-1726-4
Rojas-Padilla, J., Chaparro-Encinas, L. A., Robles-Montoya, R. I., & de los Santos-Villalobos, S. (2020). Promoción de crecimiento en trigo (Triticum turgidum L. subsp. durum) por la co-inoculación de cepas nativas de Bacillus aisladas del Valle del Yaqui, México. Nova Scientia, 12(24), 1–27.
Rojas-Padilla, J., de-Bashan, L. E., Parra-Cota, F. I., Rocha-Estrada, J., & de los Santos-Villalobos, S. (2022). Microencapsulation of Bacillus Strains for Improving Wheat (Triticum turgidum subsp. durum) Growth and Development. Plants, 11(21), 2920. https://doi.org/10.3390/plants11212920
Rowaihi, I. S. Al, Paillier, A., Rasul, S., Karan, R., Grötzinger, S. W., Takanabe, K., & Eppinger, J. (2018). Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0196079
Schmitz, L., Yan, Z., Schneijderberg, M., de Roij, M., Pijnenburg, R., Zheng, Q., Franken, C., Dechesne, A., Trindade, L. M., van Velzen, R., Bisseling, T., Geurts, R., & Cheng, X. (2022). Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. ISME Journal, 16(8), 1907–1920. https://doi.org/10.1038/s41396-022-01238-3
Seixas, A. F., Quendera, A. P., Sousa, J. P., Silva, A. F. Q., Arraiano, C. M., & Andrade, J. M. (2022). Bacterial Response to Oxidative Stress and RNA Oxidation. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.821535
Tariq, A., Guo, S., Farhat, F., & Shen, X. (2025). Engineering Synthetic Microbial Communities: Diversity and Applications in Soil for Plant Resilience. Agronomy, 15(3), 513. https://doi.org/10.3390/agronomy15030513
Trivedi, M., Shanware, A., & Kalkar, S. (2016). Development of Liquid Formulation of native Rhizobium sp. for effective plant nourishment. International Journal of Environmental & Agriculture Research, 2(9). https://www.researchgate.net/publication/309855468
Valenzuela Ruiz, V., Santoyo, G., Gómez Godínez, L. J., Cira Chávez, L. A., Parra Cota, F. I., & de los Santos Villalobos, S. (2023). Complete genome sequencing of Bacillus cabrialesii TE3T: A plant growth-promoting and biological control agent isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley. Current Research in Microbial Sciences, 23(4), 100193. https://doi.org/10.1016/j.crmicr.2023.100193
Valenzuela-Aragon, B., Parra-Cota, F. I., Santoyo, G., Arellano-Wattenbarger, G. L., & de los Santos-Villalobos, S. (2019). Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. durum) growth promoting bacteria. Plant and Soil, 435(1–2), 367–384. https://doi.org/10.1007/s11104-018-03901-1
Valenzuela-Ruiz, V., Parra-Cota, F. I., Estrada-Alvarado, M. I., Cira-Chávez, L. A., Castro-Longoria, E., & de los Santos-Villalobos, S. (2024). Potenciales mecanismos de control biológico de Bacillus paralicheniformis TRQ65 contra hongos fitopatógenos. Revista Mexicana de Fitopatología, 48. https://doi.org/10.18781/r.mex.fit.2024-18
Valenzuela-Ruiz, V., Robles-Montoya, R. I., Parra-Cota, F. I., Santoyo, G., Orozco-Mosqueda, M., Rodríguez-Ramírez, R., & de los Santos-Villalobos, S. (2019). Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 9(11), 436. https://doi.org/10.1007/s13205-019-1972-5
Villa-Rodriguez, E., Moreno-Ulloa, A., Castro-Longoria, E., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2021). Integrated omics approaches for deciphering antifungal metabolites produced by a novel Bacillus species, B. cabrialesii TE3T, against the spot blotch disease of wheat (Triticum turgidum L. subsp. durum). Microbiological Research, 251, 126826. https://doi.org/10.1016/j.micres.2021.126826
Vorholt, J. A., Vogel, C., Carlström, C. I., & Müller, D. B. (2017). Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host and Microbe, 22(2), 142–155. https://doi.org/10.1016/j.chom.2017.07.004
Wang, J., Liu, L., Gao, X., Hao, J., & Wang, M. (2021). Elucidating the effect of biofertilizers on bacterial diversity in maize rhizosphere soil. PLoS ONE, 16(4), e0249834. https://doi.org/10.1371/journal.pone.0249834
Zheng, Y., Zhao, C., Li, X., Xia, M., Wang, X., Zhang, Q., Yan, Y., Lang, F., Song J. & Wang, M. (2022). Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lwt, 159, 113209.

Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional