Long-term shelf-life of a synthetic plant growth promoting bacterial community
PDF (Español (España))

Keywords

SynComs
Bacillus
Priestia
Cofermentation
Microbial inoculants

Categories

Métricas de PLUMX 

Abstract

The development of long-term stability microbial formulations is essential for advancing the use of synthetic bacterial communities (SynComs) in agricultural biotechnology. In this study, the shelf-life of a SynCom composed of Bacillus cabrialesii subsp. cabrialesii TE3T, Bacillus paralicheniformis TRQ65, and Priestia megaterium TRQ8 was evaluated. The cofermented SynCom reached a final density of 1.60 × 10⁹ CFU/mL with efficient sporulation (100%). Short-term (30 days) stability assays revealed that trehalose and polyvinylpyrrolidone (PVP) maintained spore viability; however, none of these additives significantly improved stability compared with the additive-free formulation. Thus, long-term (12 months at 23.8 ± 1.7 °C) evaluation showed high stability of the SynCom, which maintained high spore viability, 92%. This finding can be supported since the genomes of these bacteria revealed conserved mechanisms for oxidative and osmotic stress tolerance, including antioxidant enzymes, compatible solute transporters, and PHB biosynthesis. These intrinsic stress-response traits likely contribute to the extended shelf-life of the cofermented SynCom. Overall, this SynCom represents a promising strategy for developing liquid microbial formulations with long stability under ambient conditions.

https://doi.org/10.15741/revbio.13.e2132
PDF (Español (España))

References

Aguirre, J. B. R., Gómez, L. Z. O., Villalobos, S. D. L. S., & Sánchez, M. L. (2017). Production of polyhydroxybutyrate from milk whey fermentation by Bacillus megaterium TRQ8. Revista Latinoamericana de Recursos Naturales, 13(1), 24–31. https://revista.itson.edu.mx/index.php/rlrn/article/view/261/194

Aninth, K. N., Vyshakhi, A., Shilpa, V., & Aswini, S. (2016). Population dynamics and efficiency of coconut water based liquid formulation of Pseudomonas fluorescens AMB-8. Journal of Tropical Agriculture, 54(2), 184–189.

Berninger, T., González López, Ó., Bejarano, A., Preininger, C., & Sessitsch, A. (2018). Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 11(2), 277–301. https://doi.org/10.1111/1751-7915.12880

COFEPRIS. (2025, Octubre 25). Consulta de Registros Sanitarios de Plaguicidas, Nutrientes Vegetales y LMR. https://siipris03.cofepris.gob.mx/resoluciones/consultas/conwebregplaguicida.asp

Conceição, F. R. S. da, Bessa, L. A., Teixeira, M. B., Cruvinel, B. G., & Vitorino, L. C. (2025). An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L. Agronomy, 15(7), 1668. https://doi.org/10.3390/agronomy15071668

Cristiano-Fajardo, S. A., Flores, C., Flores, N., Tinoco-Valencia, R., Serrano-Carreón, L., & Galindo, E. (2019). Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83. Journal of Biotechnology, 299, 57–65. https://doi.org/10.1016/j.jbiotec.2019.04.027

de Souza, R. S. C., Armanhi, J. S. L., & Arruda, P. (2020). From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency. Frontiers in Plant Science, 11, 1179. https://doi.org/10.3389/fpls.2020.01179

Díaz-Rodríguez, A. M., Salcedo Gastelum, L. A., Félix Pablos, C. M., Parra-Cota, F. I., Santoyo, G., Puente, M. L., Bhattacharya, D., Mukherjee, J., & de los Santos-Villalobos, S. (2021). The Current and Future Role of Microbial Culture Collections in Food Security Worldwide. Frontiers in Sustainable Food Systems, 4, 614739. https://doi.org/10.3389/fsufs.2020.614739

Gotor-Vila, A., Usall, J., Torres, R., Abadias, M., & Teixidó, N. (2017). Formulation of the biocontrol agent Bacillus amyloliquefaciens CPA-8 using different approaches: liquid, freeze-drying and fluid-bed spray-drying. BioControl, 62(4), 545–555. https://doi.org/10.1007/s10526-017-9802-3

Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97(20), 8859–8873. https://doi.org/10.1007/s00253-013-5228-8

Ibarra-Villarreal, A. L., Gándara-Ledezma, A., Godoy-Flores, A., Díaz-Rodríguez, A. M., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2021). Salt-tolerant Bacillus species as a promising strategy to mitigate the salinity stress in wheat (Triticum turgidum subsp. durum). Journal of Arid Environments, 186, 104399. https://doi.org/10.1016/j.jaridenv.2020.104399

Ibarra-Villarreal, A. L., Rojas-Padilla, J., Chaparro-Encinas, L. A., Díaz-Rodríguez, A. M., Valenzuela-Ruiz, V., Herrera-Sepúlveda, A., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2023). Soil salinity shifts cultivable microbial communities of wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. Agrociencia, 57(5), 882–919. https://doi.org/10.47163/agrociencia.v57i5.2882

Liang, J., Yang, F., Ding, Y., Zhang, X., Feng, D., & Ye, S. (2024). Batch fermentation kinetics study of biosynthesis lipopeptides by Bacillus altitudinis Q7 in 5 L fermenter. Process Biochemistry, 140, 96–107. https://doi.org/10.1016/j.procbio.2024.02.007

Liu, H., Qiu, Z., Ye, J., Verma, J. P., Li, J., & Singh, B. K. (2022). Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. Journal of Sustainable Agriculture and Environment, 1(1), 30–42. https://doi.org/10.1002/sae2.12008

Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255–267. https://doi.org/10.1016/S0959-3780(03)00054-2

Martínez-Álvarez, J. C., Castro-Martínez, C., Sánchez-Peña, P., Gutiérrez-Dorado, R., & Maldonado-Mendoza, I. E. (2016). Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology and Biotechnology, 32(5), 75. https://doi.org/10.1007/s11274-015-2000-5

Mathot, A.-G., Leguérinel, I., Couvert, O., Postollec, F., Broussolle, V., & Coroller, L. (2016). Knowledge of the physiology of spore-forming bacteria can explain the origin of spores in the food environment. Research in Microbiologoy, 168(4), 369–378. https://doi.org/10.1016/j.resmic.2016.10.006

Miller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 426–428.

Monteiro, S. M. S., Clemente, J. J., Carrondo, M. J. T., & Cunha, A. E. (2014). Enhanced Spore Production of Bacillus subtilis Grown in a Chemically Defined Medium. Advances in Microbiology, 4(8), 444–454. https://doi.org/10.4236/aim.2014.48049

Mordor Intelligence Research & Advisory. (2025). Agricultural Inoculants Market Size & Share Analysis—Growth Trends & Forecasts (2025—2030). https://www.mordorintelligence.com/industry-reports/agricultural-inoculants-market.

Niu, B., Paulson, J. N., Zheng, X., & Kolter, R. (2017). Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences of the United States of America, 114(12), E2450–E2459. https://doi.org/10.1073/pnas.1616148114

Pacheco, A. R., Moel, M., & Segrè, D. (2019). Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nature Communications, 10(103). https://doi.org/10.1038/s41467-018-07946-9

Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7(6), 579–586. https://doi.org/10.1016/j.mib.2004.10.001

Rath, H., Sappa, P. K., Hoffmann, T., Gesell Salazar, M., Reder, A., Steil, L., Hecker, M., Bremer, E., Mäder, U., & Völker, U. (2020). Impact of high salinity and the compatible solute glycine betaine on gene expression of Bacillus subtilis. Environmental Microbiology, 22(8), 3266–3286. https://doi.org/10.1111/1462-2920.15087

Robles-Montoya, R. I., Chaparro-Encinas, L. A., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2020). Improving biometric traits of wheat seedlings with the inoculation of a consortium native of Bacillus. Revista Mexicana Ciencias Agrícolas, 11(1), 229–235. https://doi.org/10.29312/remexca.v11i1.2162.

Robles-Montoya, R. I., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2019). Draft genome sequence of Bacillus megaterium TRQ8, a plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 9(5), 1–5. https://doi.org/10.1007/s13205-019-1726-4

Rojas-Padilla, J., Chaparro-Encinas, L. A., Robles-Montoya, R. I., & de los Santos-Villalobos, S. (2020). Promoción de crecimiento en trigo (Triticum turgidum L. subsp. durum) por la co-inoculación de cepas nativas de Bacillus aisladas del Valle del Yaqui, México. Nova Scientia, 12(24), 1–27.

Rojas-Padilla, J., de-Bashan, L. E., Parra-Cota, F. I., Rocha-Estrada, J., & de los Santos-Villalobos, S. (2022). Microencapsulation of Bacillus Strains for Improving Wheat (Triticum turgidum subsp. durum) Growth and Development. Plants, 11(21), 2920. https://doi.org/10.3390/plants11212920

Rowaihi, I. S. Al, Paillier, A., Rasul, S., Karan, R., Grötzinger, S. W., Takanabe, K., & Eppinger, J. (2018). Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0196079

Schmitz, L., Yan, Z., Schneijderberg, M., de Roij, M., Pijnenburg, R., Zheng, Q., Franken, C., Dechesne, A., Trindade, L. M., van Velzen, R., Bisseling, T., Geurts, R., & Cheng, X. (2022). Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome. ISME Journal, 16(8), 1907–1920. https://doi.org/10.1038/s41396-022-01238-3

Seixas, A. F., Quendera, A. P., Sousa, J. P., Silva, A. F. Q., Arraiano, C. M., & Andrade, J. M. (2022). Bacterial Response to Oxidative Stress and RNA Oxidation. Frontiers in Genetics, 12. https://doi.org/10.3389/fgene.2021.821535

Tariq, A., Guo, S., Farhat, F., & Shen, X. (2025). Engineering Synthetic Microbial Communities: Diversity and Applications in Soil for Plant Resilience. Agronomy, 15(3), 513. https://doi.org/10.3390/agronomy15030513

Trivedi, M., Shanware, A., & Kalkar, S. (2016). Development of Liquid Formulation of native Rhizobium sp. for effective plant nourishment. International Journal of Environmental & Agriculture Research, 2(9). https://www.researchgate.net/publication/309855468

Valenzuela Ruiz, V., Santoyo, G., Gómez Godínez, L. J., Cira Chávez, L. A., Parra Cota, F. I., & de los Santos Villalobos, S. (2023). Complete genome sequencing of Bacillus cabrialesii TE3T: A plant growth-promoting and biological control agent isolated from wheat (Triticum turgidum subsp. durum) in the Yaqui Valley. Current Research in Microbial Sciences, 23(4), 100193. https://doi.org/10.1016/j.crmicr.2023.100193

Valenzuela-Aragon, B., Parra-Cota, F. I., Santoyo, G., Arellano-Wattenbarger, G. L., & de los Santos-Villalobos, S. (2019). Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. durum) growth promoting bacteria. Plant and Soil, 435(1–2), 367–384. https://doi.org/10.1007/s11104-018-03901-1

Valenzuela-Ruiz, V., Parra-Cota, F. I., Estrada-Alvarado, M. I., Cira-Chávez, L. A., Castro-Longoria, E., & de los Santos-Villalobos, S. (2024). Potenciales mecanismos de control biológico de Bacillus paralicheniformis TRQ65 contra hongos fitopatógenos. Revista Mexicana de Fitopatología, 48. https://doi.org/10.18781/r.mex.fit.2024-18

Valenzuela-Ruiz, V., Robles-Montoya, R. I., Parra-Cota, F. I., Santoyo, G., Orozco-Mosqueda, M., Rodríguez-Ramírez, R., & de los Santos-Villalobos, S. (2019). Draft genome sequence of Bacillus paralicheniformis TRQ65, a biological control agent and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere in the Yaqui Valley, Mexico. 3 Biotech, 9(11), 436. https://doi.org/10.1007/s13205-019-1972-5

Villa-Rodriguez, E., Moreno-Ulloa, A., Castro-Longoria, E., Parra-Cota, F. I., & de los Santos-Villalobos, S. (2021). Integrated omics approaches for deciphering antifungal metabolites produced by a novel Bacillus species, B. cabrialesii TE3T, against the spot blotch disease of wheat (Triticum turgidum L. subsp. durum). Microbiological Research, 251, 126826. https://doi.org/10.1016/j.micres.2021.126826

Vorholt, J. A., Vogel, C., Carlström, C. I., & Müller, D. B. (2017). Establishing Causality: Opportunities of Synthetic Communities for Plant Microbiome Research. Cell Host and Microbe, 22(2), 142–155. https://doi.org/10.1016/j.chom.2017.07.004

Wang, J., Liu, L., Gao, X., Hao, J., & Wang, M. (2021). Elucidating the effect of biofertilizers on bacterial diversity in maize rhizosphere soil. PLoS ONE, 16(4), e0249834. https://doi.org/10.1371/journal.pone.0249834

Zheng, Y., Zhao, C., Li, X., Xia, M., Wang, X., Zhang, Q., Yan, Y., Lang, F., Song J. & Wang, M. (2022). Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lwt, 159, 113209.

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.