The effect of prickly pear pericarp mucilage (Opuntia robusta Wendl. var.robusta) on spray drying of prickly pear juic
SPA_pdf (Español (España))
ENG_pdf

Keywords

Prickly pear
mucilage
spray-dried
powder

Métricas de PLUMX 

Abstract

Mexico is the main producer of prickly pear worldwide with more than 250 thousand tons per year. The prickly pear is marketed fresh, discarding the pericarp, which represents approximately 50 % of the fruit. We take advantage of the pericarp of the prickly pear to extract the mucilage. This was mixed with maltodextrin in 4 proportions (P1, 50%; P2, 33.3 %; P3, 25 %, and P4, 20 %) and was used to spray dry prickly pear juice (Opuntia robusta Wendl. var. robusta). Prickly pear juice powders were characterized by differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, laser scanning confocal microscopy, antioxidant capacity, betalain content, and color. The addition of mucilage decreased the yield and the glass transition temperature; increased the moisture, the water activity, and the antioxidant capacity of the powders obtained by spray drying. However, P3 is a powder with low moisture and water activity, smooth surface, small particle size, and deep violet color. This powder has the potential to be applied in the food industry. In addition, it offers an alternative to the marketing of tuna juice.

https://doi.org/10.15741/revbio.10.e1476
SPA_pdf (Español (España))
ENG_pdf

References

Acosta-Domínguez, L., Hernández-Sánchez, H., Gutiérrez-López, G. F., Alamilla-Beltrán, L., & Azuara, E. (2016). Modification of the soy protein isolate surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering, 168, 105–112. https://doi.org/10.1016/j.jfoodeng.2015.07.031

Amaya-Cruz, D. M., Pérez-Ramírez, I. F., Delgado-García, J., Mondragón-Jacobo, C., Dector-Espinoza, A., & Reynoso-Camacho, R. (2019). An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus indica L.) peel with different tonalities. Food Chemistry, 278, 568–578. https://doi.org/10.1016/j.foodchem.2018.11.031

Bhandari, B., Nidhi, B., Zhang, M., & schuck, P. (2013). Handbook of Food Powders: Processes and Properties. Google Libros. Woodhead Publishing.

https://books.google.com.mx/books?hl=es&lr=&id=BAJEAgAAQBAJ&oi=fnd&pg= PP1&dq=food+powders&ots=oM6bYi1xL2&sig=7W0tGcnSRQq9sXM6c21Kn9UvkA#v =onepage&q=foodpowders&f=false

Brands, S., Schein, P., Castro-Ochoa, K. F., & Galinski, E. A. (2019). Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Archives of Biochemistry and Biophysics, 674, 108097. https://doi.org/10.1016/J.ABB.2019.108097

Cakmak, H., Ilyasoglu-Buyukkestelli, H., Sogut, E., Ozyurt, V. H., Gumus-Bonacina, C. E., & Simsek, S. (2023). A review on recent advances of plant mucilages and their applications in food industry: Extraction, functional properties and health benefits. Food Hydrocolloids for Health, 3, 100131. https://doi.org/10.1016/J.FHFH.2023.100131

Can Karaca, A., Guzel, O., & Ak, M. M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Journal of the Science of Food and Agriculture, 96(2), 449–455. https://doi.org/10.1002/jsfa.7110

Castellanos-Santiago, E., & Yahia, E. M. (2008). Identification and quantification of betalains from the fruits of 10 mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 56(14), 5758–5764. https://doi.org/10.1021/jf800362t

Coria-Cayupán, Y. S., Ochoa, M. J., & Nazareno, M. A. (2011). Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chemistry, 126(2), 514–519. https://doi.org/10.1016/j.foodchem.2010.11.033

Daniloski, D., D’Cunha, N.M., Speer, H., McKune, A.J., Alexopoulos, N., Panagiotakos., D.B., Petkoska, A.T., Naumovski, N.. (2022). Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. Food Bioscience, 47 101665. https://doi.org/10.1016/J.FBIO.2022.101665

Fazaeli, M., Emam-Djomeh, Z., Kalbasi-Ashtari, A., & Omid, M. (2012). Effect of process conditions and carrier concentration for improving drying yield and other quality attributes of spray dried black mulberry (Morus nigra) juice. International Journal Food Engineering. 8(1), 1–20. https://doi.org/10.1515/1556-3758.2023

Fernández-Repetto, A., Gómez-Maqueo, A., García-Cayuela, T., Guajardo-Flores, D., & Cano, M. P. (2023). Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts. Food Hydrocolloids for Health, 3. https://doi.org/10.1016/J.FHFH.2023.100115

García-Cayuela, T., Gómez-Maqueo, A., Guajardo, D., Welti-Chanes, J.J., & Cano., P. (2019). Characterization and quantification of individual betalain and phenolic compounds in Mexican an Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues. A comparative study. Journal of Foods Composition and Analysis. https://doi.org/10.1016/j.jfca.2018.11.002

Gheribi, R., Habibi, Y., & Khwaldia, K. (2019). Prickly pear peels as a valuable resource of added-value polysaccharide: Study of structural, functional and film forming properties. International Journal of Biological Macromolecules, 126, 238–245. https://doi.org/10.1016/J.IJBIOMAC.2018.12.228

Gómez-Salazar, J.A., Patlán-González, J., Sosa-Morales, M.E., Segovia-Hernandez, J. G., Sánchez-Ramírez, E., & Ramírez-Márquez, C. (2022). Multi-objective optimization of sustainable red prickly pear (Opuntia streptacantha) peel drying and biocompounds extraction using a hybrid stochastic algorithm. Food and Bioproducts Processing, 132, 155–166. https://doi.org/10.1016/J.FBP.2022.01.003

Habibi, Y., Mahrouz, M., Marais, M. F., & Vignon, M. R. (2004). An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research, 339(6), 1201–1205. https://doi.org/10.1016/j.carres.2004.02.004

Kurek, M., Benbettaieb, N., Ščetar, M., Chaudy, E., Elez-Garofulić, I., Repajić, M., Klepac, D., Valić, S., Debeaufort, F., & Galić, K. (2021). Novel functional chitosan and pectin bio-based packaging films with encapsulated Opuntia-ficus indica waste. Food Bioscience, 41, 100980. https://doi.org/10.1016/J.FBIO.2021.100980

León-Martínez, F. M., Méndez-Lagunas, L. L., & Rodríguez-Ramírez, J. (2010). Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydrate Polymers, 81(4), 864–870. https://doi.org/10.1016/J.CARBPOL.2010.03.061

Medina-Torres, L., García-Cruz, E. E., Calderas, F., González Laredo, R. F., Sánchez-Olivares, G., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., & RodrÍguez-RamÍrez, J. (2013). Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LW-Food Science and Technology, 50(2), 642–650. https://doi.org/10.1016/J.LWT.2012.07.038

O’Donoghue, L.T., Haque, M.K., Kennedy, D., Laffir, F.R., Hogan, S. A. & James A. (2019). Influence of particle size on the physicochemical properties and stickiness of dairy powders. International Dairy Journal, 98:54-63. https://doi.org/10.1016/j.idairyj.2019.07.002

Ortiz-Basurto, R. I., Rubio-Ibarra, M. E., Ragazzo-Sanchez, J. A., Beristain, C. I., & Jiménez-Fernández, M. (2017). Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydrate Polymers, 175, 603–609. https://doi.org/10.1016/j.carbpol.2017.08.030

Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry, 187, 174–181. https://doi.org/10.1016/j.foodchem.2015.04.090

Pereyra-Castro, S. C., Pérez-Pérez, V., Hernández-Sánchez, H., Jiménez-Aparicio, A., Gutiérrez-López, G. F., & Alamilla-Beltrán, L. (2019). Effect of composition and homogenization pressure of chia oil emulsions elaborated by microfluidization. Revista Mexicana de Ingeniera Quimica, 18(1), 69–81. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Pereyra

Porras-Saavedra, J., Palacios-González, E., Lartundo-Rojas, L., Garibay-Febles, V., Yáñez-Fernández, J., Hernández-Sánchez, H., Gutiérrez-López, G., & Alamilla-Beltrán, L. (2015). Microstructural properties and distribution of components in microparticles obtained by spray-drying. Journal of Food Engineering, 152, 105–112. https://doi.org/10.1016/j.jfoodeng.2014.11.014

Roos, Y., & Karel, M. (1991). Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. Journal of Food Science, 56(6), 1676–1681. https://doi.org/10.1111/j.1365-2621.1991.tb08669.x

Sáenz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622. https://doi.org/10.1016/j.foodchem.2008.09.095

Sepúlveda, E., Sáenz, C., Aliaga, E., & Aceituno, C. (2007). Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments, 68(4), 534–545. https://doi.org/10.1016/j.jaridenv.2006.08.001

Shishir, M. R. I. & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006

Servicio. de información agroalimentaria y pesquera [SIAP]. (2021). https://nube.siap.gob.mx/avance_agricola/https://nube.siap.gob.mx/avance_agricola/

Solórzano, A. C., Martín, A., Salazar, S. M., Sandoval, J. S., & Kirschbaum, D. S. (2015). Correlation between fruit color measurement and total soluble solids concentration in strawberry (Fragaria ananassa Duch.). Revista. Agronomia. Noroeste Argentina, 35(1), 55-60.

Soto-Castro, D., Gutiérrez, M. C., León-Martínez F. M., Santiago-García, P. A., Aragón-Lucero, I., & Antonio-Antonio, F. (2019). Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chemistry, 272, 715–722. https://doi.org/10.1016/J.FOODCHEM.2018.08.069

Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451. https://doi.org/10.1021/jf048751y

Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009

Vignoni, L. A., M.césari, R., Forte, M., & Mirábile, M. L. (2006). Determinación de indice de color en ajo picado. Información Tecnológica, 17(6), 63–67. https://doi.org/10.4067/s0718-07642006000600011

Vijayalakshmi, M., & Ruckmani, K. (2016). Ferric reducing anti-oxidant power assay in plant extract. Bangladesh Journal of Pharmacology, 11(3), 570–572. https://doi.org/10.3329/BJP.V11I3.27663

Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2011). Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). Journal of Food Science and Technology, 48(6), 677–684. https://doi.org/10.1007/s13197-010-0

Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.