Abstract
Mexico is the main producer of prickly pear worldwide with more than 250 thousand tons per year. The prickly pear is marketed fresh, discarding the pericarp, which represents approximately 50 % of the fruit. We take advantage of the pericarp of the prickly pear to extract the mucilage. This was mixed with maltodextrin in 4 proportions (P1, 50%; P2, 33.3 %; P3, 25 %, and P4, 20 %) and was used to spray dry prickly pear juice (Opuntia robusta Wendl. var. robusta). Prickly pear juice powders were characterized by differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, laser scanning confocal microscopy, antioxidant capacity, betalain content, and color. The addition of mucilage decreased the yield and the glass transition temperature; increased the moisture, the water activity, and the antioxidant capacity of the powders obtained by spray drying. However, P3 is a powder with low moisture and water activity, smooth surface, small particle size, and deep violet color. This powder has the potential to be applied in the food industry. In addition, it offers an alternative to the marketing of tuna juice.
References
Acosta-Domínguez, L., Hernández-Sánchez, H., Gutiérrez-López, G. F., Alamilla-Beltrán, L., & Azuara, E. (2016). Modification of the soy protein isolate surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering, 168, 105–112. https://doi.org/10.1016/j.jfoodeng.2015.07.031
Amaya-Cruz, D. M., Pérez-Ramírez, I. F., Delgado-García, J., Mondragón-Jacobo, C., Dector-Espinoza, A., & Reynoso-Camacho, R. (2019). An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus indica L.) peel with different tonalities. Food Chemistry, 278, 568–578. https://doi.org/10.1016/j.foodchem.2018.11.031
Bhandari, B., Nidhi, B., Zhang, M., & schuck, P. (2013). Handbook of Food Powders: Processes and Properties. Google Libros. Woodhead Publishing.
https://books.google.com.mx/books?hl=es&lr=&id=BAJEAgAAQBAJ&oi=fnd&pg= PP1&dq=food+powders&ots=oM6bYi1xL2&sig=7W0tGcnSRQq9sXM6c21Kn9UvkA#v =onepage&q=foodpowders&f=false
Brands, S., Schein, P., Castro-Ochoa, K. F., & Galinski, E. A. (2019). Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Archives of Biochemistry and Biophysics, 674, 108097. https://doi.org/10.1016/J.ABB.2019.108097
Cakmak, H., Ilyasoglu-Buyukkestelli, H., Sogut, E., Ozyurt, V. H., Gumus-Bonacina, C. E., & Simsek, S. (2023). A review on recent advances of plant mucilages and their applications in food industry: Extraction, functional properties and health benefits. Food Hydrocolloids for Health, 3, 100131. https://doi.org/10.1016/J.FHFH.2023.100131
Can Karaca, A., Guzel, O., & Ak, M. M. (2016). Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Journal of the Science of Food and Agriculture, 96(2), 449–455. https://doi.org/10.1002/jsfa.7110
Castellanos-Santiago, E., & Yahia, E. M. (2008). Identification and quantification of betalains from the fruits of 10 mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 56(14), 5758–5764. https://doi.org/10.1021/jf800362t
Coria-Cayupán, Y. S., Ochoa, M. J., & Nazareno, M. A. (2011). Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chemistry, 126(2), 514–519. https://doi.org/10.1016/j.foodchem.2010.11.033
Daniloski, D., D’Cunha, N.M., Speer, H., McKune, A.J., Alexopoulos, N., Panagiotakos., D.B., Petkoska, A.T., Naumovski, N.. (2022). Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. Food Bioscience, 47 101665. https://doi.org/10.1016/J.FBIO.2022.101665
Fazaeli, M., Emam-Djomeh, Z., Kalbasi-Ashtari, A., & Omid, M. (2012). Effect of process conditions and carrier concentration for improving drying yield and other quality attributes of spray dried black mulberry (Morus nigra) juice. International Journal Food Engineering. 8(1), 1–20. https://doi.org/10.1515/1556-3758.2023
Fernández-Repetto, A., Gómez-Maqueo, A., García-Cayuela, T., Guajardo-Flores, D., & Cano, M. P. (2023). Analysis of hydrocolloid excipients for controlled delivery of high-value microencapsulated prickly pear extracts. Food Hydrocolloids for Health, 3. https://doi.org/10.1016/J.FHFH.2023.100115
García-Cayuela, T., Gómez-Maqueo, A., Guajardo, D., Welti-Chanes, J.J., & Cano., P. (2019). Characterization and quantification of individual betalain and phenolic compounds in Mexican an Spanish prickly pear (Opuntia ficus-indica L. Mill) tissues. A comparative study. Journal of Foods Composition and Analysis. https://doi.org/10.1016/j.jfca.2018.11.002
Gheribi, R., Habibi, Y., & Khwaldia, K. (2019). Prickly pear peels as a valuable resource of added-value polysaccharide: Study of structural, functional and film forming properties. International Journal of Biological Macromolecules, 126, 238–245. https://doi.org/10.1016/J.IJBIOMAC.2018.12.228
Gómez-Salazar, J.A., Patlán-González, J., Sosa-Morales, M.E., Segovia-Hernandez, J. G., Sánchez-Ramírez, E., & Ramírez-Márquez, C. (2022). Multi-objective optimization of sustainable red prickly pear (Opuntia streptacantha) peel drying and biocompounds extraction using a hybrid stochastic algorithm. Food and Bioproducts Processing, 132, 155–166. https://doi.org/10.1016/J.FBP.2022.01.003
Habibi, Y., Mahrouz, M., Marais, M. F., & Vignon, M. R. (2004). An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits. Carbohydrate Research, 339(6), 1201–1205. https://doi.org/10.1016/j.carres.2004.02.004
Kurek, M., Benbettaieb, N., Ščetar, M., Chaudy, E., Elez-Garofulić, I., Repajić, M., Klepac, D., Valić, S., Debeaufort, F., & Galić, K. (2021). Novel functional chitosan and pectin bio-based packaging films with encapsulated Opuntia-ficus indica waste. Food Bioscience, 41, 100980. https://doi.org/10.1016/J.FBIO.2021.100980
León-Martínez, F. M., Méndez-Lagunas, L. L., & Rodríguez-Ramírez, J. (2010). Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization. Carbohydrate Polymers, 81(4), 864–870. https://doi.org/10.1016/J.CARBPOL.2010.03.061
Medina-Torres, L., García-Cruz, E. E., Calderas, F., González Laredo, R. F., Sánchez-Olivares, G., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., & RodrÍguez-RamÍrez, J. (2013). Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LW-Food Science and Technology, 50(2), 642–650. https://doi.org/10.1016/J.LWT.2012.07.038
O’Donoghue, L.T., Haque, M.K., Kennedy, D., Laffir, F.R., Hogan, S. A. & James A. (2019). Influence of particle size on the physicochemical properties and stickiness of dairy powders. International Dairy Journal, 98:54-63. https://doi.org/10.1016/j.idairyj.2019.07.002
Ortiz-Basurto, R. I., Rubio-Ibarra, M. E., Ragazzo-Sanchez, J. A., Beristain, C. I., & Jiménez-Fernández, M. (2017). Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohydrate Polymers, 175, 603–609. https://doi.org/10.1016/j.carbpol.2017.08.030
Otálora, M. C., Carriazo, J. G., Iturriaga, L., Nazareno, M. A., & Osorio, C. (2015). Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry, 187, 174–181. https://doi.org/10.1016/j.foodchem.2015.04.090
Pereyra-Castro, S. C., Pérez-Pérez, V., Hernández-Sánchez, H., Jiménez-Aparicio, A., Gutiérrez-López, G. F., & Alamilla-Beltrán, L. (2019). Effect of composition and homogenization pressure of chia oil emulsions elaborated by microfluidization. Revista Mexicana de Ingeniera Quimica, 18(1), 69–81. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n1/Pereyra
Porras-Saavedra, J., Palacios-González, E., Lartundo-Rojas, L., Garibay-Febles, V., Yáñez-Fernández, J., Hernández-Sánchez, H., Gutiérrez-López, G., & Alamilla-Beltrán, L. (2015). Microstructural properties and distribution of components in microparticles obtained by spray-drying. Journal of Food Engineering, 152, 105–112. https://doi.org/10.1016/j.jfoodeng.2014.11.014
Roos, Y., & Karel, M. (1991). Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. Journal of Food Science, 56(6), 1676–1681. https://doi.org/10.1111/j.1365-2621.1991.tb08669.x
Sáenz, C., Tapia, S., Chávez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622. https://doi.org/10.1016/j.foodchem.2008.09.095
Sepúlveda, E., Sáenz, C., Aliaga, E., & Aceituno, C. (2007). Extraction and characterization of mucilage in Opuntia spp. Journal of Arid Environments, 68(4), 534–545. https://doi.org/10.1016/j.jaridenv.2006.08.001
Shishir, M. R. I. & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science and Technology 65, 49–67. https://doi.org/10.1016/j.tifs.2017.05.006
Servicio. de información agroalimentaria y pesquera [SIAP]. (2021). https://nube.siap.gob.mx/avance_agricola/https://nube.siap.gob.mx/avance_agricola/
Solórzano, A. C., Martín, A., Salazar, S. M., Sandoval, J. S., & Kirschbaum, D. S. (2015). Correlation between fruit color measurement and total soluble solids concentration in strawberry (Fragaria ananassa Duch.). Revista. Agronomia. Noroeste Argentina, 35(1), 55-60.
Soto-Castro, D., Gutiérrez, M. C., León-Martínez F. M., Santiago-García, P. A., Aragón-Lucero, I., & Antonio-Antonio, F. (2019). Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chemistry, 272, 715–722. https://doi.org/10.1016/J.FOODCHEM.2018.08.069
Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451. https://doi.org/10.1021/jf048751y
Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science and Technology 63, 91–102. https://doi.org/10.1016/j.tifs.2017.03.009
Vignoni, L. A., M.césari, R., Forte, M., & Mirábile, M. L. (2006). Determinación de indice de color en ajo picado. Información Tecnológica, 17(6), 63–67. https://doi.org/10.4067/s0718-07642006000600011
Vijayalakshmi, M., & Ruckmani, K. (2016). Ferric reducing anti-oxidant power assay in plant extract. Bangladesh Journal of Pharmacology, 11(3), 570–572. https://doi.org/10.3329/BJP.V11I3.27663
Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. M. (2011). Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). Journal of Food Science and Technology, 48(6), 677–684. https://doi.org/10.1007/s13197-010-0
Zotarelli, M. F., da Silva, V. M., Durigon, A., Hubinger, M. D., & Laurindo, J. B. (2017). Production of mango powder by spray drying and cast-tape drying. Powder Technology, 305, 447–454. https://doi.org/10.1016/j.powtec.2016.10.027
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.