Abstract
SARS-CoV-2 is present in the feces and saliva of individuals with symptomatic or asymptomatic infection, this body fluids are deposited on different water matrices, including drainage water; therefore, wastewater surveillance of RNA of SARS-CoV-2 has emerged as a promising tool as an early warning of potential outbreaks. It is known that the viral genetic material is present in wastewater for several days. However, more data on SARS-CoV-2 are needed for a better understanding of the viral load kinetics in raw water matrices. This work aimed to assess the viral load decay of SARS-CoV-2 RNA in different raw aquatic matrices to understand the RNA stability through time. Each water matrix (seawater, influent wastewater, effluent wastewater, and tap water) was inoculated and evaluated for 62 days to determine the viral load kinetic decay by RT-PCR in real time. SARS-CoV-2 RNA was detected in all water matrices during all the experiment. Effluent, influent, and seawater water matrices harsh conditions constraint SARS-CoV-2 RNA detection, with a half-life of 15.24, 43.24, and 32.38 days, and T90 values of 50.63, 143.64, and 107.54 days respectively. Meanwhile, in tap water, the viral genetic material remained for the longest time without significant changes. This study successfully demonstrates that the viral load may be affected by the physicochemical characteristics of the water matrix yet confirms that the surveillance of recreational waters and wastewater for SARS-CoV-2 can be a valuable tool for WBE (Wastewater-based epidemiology) as a leading indicator of changes in COVID-19 burden in a community.
References
Aguiar-Oliveira, M.L., Campos, A., Matos, A.R., Rigotto, C., Sotero-Martins, A., Teixeira, P., & Siqueira, M.M. (2020). Wastewater-based epidemiology (WBE) and viral detection in polluted surface water: A valuable tool for COVID-19 surveillance-A brief review. International Journal of Environmental Research Public Health 2020, 17(24), 9251.https://doi:10.3390/ijerph17249251.
Ahmed, W., Bertsch, P.M., Bibby, K., Haramoto, E., Hewitt, J., Huygens, F., Gyawali, P., Korajkic, A., Ridell, S., Sherchan, S.P., Simpson, S.L., Sirikanchana, K., Symonds, E.M., Verhagen, R., Vasan, S.S., Kitajima, M., & Bivins, A. (2020). Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environmental Research, 191,110092. https://doi.org/10.1016/j.envres.2020.110092
Basavaraju, S., Aswathanarayan, J.B., Basavegowda, M., & Somanathan, B. (2021). Coronavirus: Occurrence, surveillance and persistence in wastewater. Environmental Monitoring and Assessment, 193,508. https://doi.org/10.1007/s10661-021-09303-8
Bivins, A., Greaves, J., Fischer, R., Yinda, K. C., Ahmed, W., Kitajima, M., Munster, V.J., & Bibby, K. (2020). Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science & Technology Letters, 7(12), 937-942. https:// doi: 10.1021/acs.estlett.0c00730
Chia, P. Y., Coleman, K. K., Tan, Y. K., Ong, S. W. X., Gum, M., Lau, S. K., Lim X.F., Lim A.S., Sutjipto, S., Lee, P.H., Son, T.T., Young, B.E., Milton, D.K., Gray, G.C., Schuster, S., Barkham, T., De, P.P., Vasoo, S., Chan, M., Peng Ang, B.S., & Marimuthu, K.. (2020). Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nature Communications, 11(1), 2800. https://doi: 10.1038/s41467-020-16670-2
De Rijcke, M., Shaikh, H.M., Mees, J., Nauwynck, H., & Vandegehuchte, M.B. (2021). Environmental stability of porcine respiratory coronavirus in aquatic environments. Plos One, 16(7): e0254540. https://doi.org/10.1371/journal.pone.0254540
Fukuta, M., Mao, Z. Q., Morita, K., & Moi, M. L. (2021). Stability and Infectivity of SARS-CoV-2 and Viral RNA in Water, Commercial Beverages, and Bodily Fluids. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.667956
Gerrity, D., Papp, K., Stoker, M., Sims, A., & Frehner, W. (2021). Early-pandemic wastewater surveyllance of SARS-CoV-2 in Southern Nevada: Methodology, occurrence and incidence/prevalence considerations. Water Research X, 10,100086. https://doi.org/10.1016/j.wroa.2020.100086
Giraud-Billoud, M., Cuervo, P., Altamirano J.C., Pizarro, M., Aranibar, J.N., Catapano, A., Cuello, H., Masachessi G., & Vega, I.A. (2021). Monitoring SARS-CoV-2 RNA in wastewater as an epidemiological tool in Mendoza, Argentina. Science of the Total Environment, 796,148887. https://doi.org/10.1016/j.scitotenv.2021.148887
Grant, M. C., Geoghegan, L., Arbyn, M., Mohammed, Z., McGuinness, L., Clarke, E. L., & Wade, R. G. (2020). The prevalence of symptoms in 24,410 adults infected by the novel coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 studies from 9 countries. PLoS One, 15(6), e0234765. https://doi: 10.1371/journal.pone.0234765
Haramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of The Total Environment, 737, 140405. https://doi.org/10.1016/j.scitotenv.2020.140405
Kim, J.M., Kim, H.M., Lee, E.J., Jo, H.J., Yoon, Y., Lee, N.J., Son, J., Lee, Y.J., Kim, M.S., Lee, Y.P., Chae, S.J., Park, K.R., Cho, S.R., Park, S., Kim, S.J., Wang, E., Woo, S., Lim, A., Park, S.J., & Jang, J. (2020). Detection and isolation of SARS-CoV-2 in serum, urine and stool specimens of COVID-19 patients from the republic of Korea. Osong Public Health and Research Perspectives, 11(3),112-117. https://doi.org/10.24171/j.phrp.2020.11.3.02
Kitajima, M., Ahmed, W., Bibby K., Carducci, A., Gerba, C.P., Hamilton K.A., Haramoto, E., & Rose, J.B. (2020). SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of the Total Environment, 739, 139076. https://doi.org/10.1016/j.scitotenv.2020.139076
Kumar, M., Kumar Patel, A., Shah, A.V., Raval, J., Rajpara, N., Joshi, M., & Joshi C. (2020). First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Science of the Total Environment, 746,141326. https://doi.org/10.1016/j.scitotenv.2020.141326
Lednicky, J. A., Lauzardo, M., Fan, Z. H., Jutla, A., Tilly, T. B., Gangwar, M., Uzmani, M., Shankar, S., Mohamed, K., Eirguen-Fernandez, A., Stephenson, C.J., Alam., M., Elbadry, E., Loeb, J, Subramanian, K., Waltzek, T., Cherabuddi, Morris Jr, G., & Wu, C.-Y. (2020). Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International Journal of Infectious Diseases, 100, 476-482. https://doi.org/10.1016/j.ijid.2020.09.025
Li, G., Fan, Y., Lai, Y., Han, T., Li, Z., Zhou, P., Wang, P.P, Hu, D., Liu, X., Zhang, Q., & Wu, J. (2020). Coronavirus infections and immune responses. Journal of Medical Virology, 92(4), 424-432. https://doi: 10.1002/jmv.25685
Liotti, F. M., Menchinelli, G., Marchetti, S., Morandotti, G. A., Sanguinetti, M., Posteraro, B., & Cattani, P. (2021). Evaluation of three commercial assays for SARS-CoV-2 molecular detection in upper respiratory tract samples. European Journal of Clinical Microbiology & Infectious Diseases, 40(2), 269-277. https://doi: 10.1007/s10096-020-04025-0
Mitic, V., Lazovic, G., Milosevic, D., Ristanovic, E., Simeunovic, D., Tsay, C., Milosevic, M., & Vlahovic, C. (2021). Brownian fractal nature coronavirus motion. Modern Physics Letters B, 35 (4), 2150076. https://doi.org/10.1142/S0217984921500767
Mordecai, G.J., & Hewson, I. (2020). Coronaviruses in the sea. Frontiers in Microbiology, 11,1975. https://doi: 10.3389/fmicb.2020.01795
Pasquarella, C., Colucci, M. E., Bizzarro, A., Veronesi, L., Affanni, P., Meschi, T., Brianti,E., Vitali, P., & Albertini, R. (2020). Detection of SARS-CoV-2 on hospital surfaces. Acta bio-medica: Atenei Parmensis, 91(9-S), 76-78. https://doi: 10.23750/abm.v91i9-S.10137
Polo, D., Quintela-Baluja, M., Corbishley, A., Jones, D.L., Singer, A.C., Graham, D.W., & Romalde, J.L. (2020). Making waves: Wastewater-based epidemiology for COVID-19-approaches and challenges for surveillance and prediction. Water Research, 186,116404. https://doi.org/10.1016/j.watres.2020.116404
Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Simón, P., Allende, & Sánchez, A. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19occurrence in a low prevalence area. Water Research, 181,115942. https://doi.org/10.1016/j.watres.2020.115942
Razzini, K., Castrica, M., Menchetti, L., Maggi, L., Negroni, L., Orfeo, N. V., Pizziccheri, A., Stocco, M., Muttini, S., & Balzaretti, C. M. (2020). SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Science of The Total Environment, 742, 140540. https://doi.org/10.1016/j.scitotenv.2020.140540
Rimoldi, S. G., Stefani, F., Gigantiello, A., Polesello, S., Comandatore, F., Mileto, D., Maresca, M., Longobardi, C., Mancon, A., Romeri, F., Pagani, C., Cappelli, F., Roscioli, C., Moja, L., Gismondo, M. R., & Salerno, F. (2020). Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Science of The Total Environment, 744, 140911. https://doi.org/10.1016/j.scitotenv.2020.140911
Sala-Comorera, L., Reynolds, L.J., Martin, N.A., O´Sullivan, J.J., Meijer W.G., & Fletcher N.F. (2021). Decay of infectious SARS-CoV-2 and surrogates in aquatic environments. Water Research, 201,117090. https://doi.org/10.1016/j.watres.2021.117090
Sherchan, S.P., Shahin, S., Ward, L.M., Tandukar, S., Aw, T.G., Schmitz, B., Ahmed, W., & Kitajima, M. (2020). First detection of SARS-CoV-2 RNA in wastewater in North America: Astudy in Louisiana, USA. Science of the Total Environment, 743,140621. https://doi.org/10.1016/j.scitotenv.2020.140621
Thompson, J.R., Nancharaiah, Y.V., Gu, X., Lin Lee, W., Rajal, V.B., Haines, M.B., Girones, R., Ching N. L., Alm, E.J., & Wuertz, S. (2020). Making waves: Wastewater surveillance of SARS-CoV-2 for population-based health management. Water Research, 184,116181. https://doi.org/10.1016/j.watres.2020.116181
World Health Organization (2020a). Novel Coronavirus (2019-nCoV): situation report, 1. Geneva: World Health Organization.
World Health Organization (2020b). Novel Coronavirus (2019-nCoV): situation report, 22. Geneva: World Health Organization.
World Health Organization (2021). Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern.
World Health Organization (2022). WHO Coronavirus (COVID-19) dashboard. https://covid19.who.int. Accession date: January 25th 2023
Zhou, J., Otter, J. A., Price, J. R., Cimpeanu, C., Meno, D., Kinross, J., Boshier, P.R., Mason, S., Bolt, F.,Holmes, A.H., & Barclay,W. S. (2020). Investigating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Surface and Air Contamination in an Acute Healthcare Setting During the Peak ofthe Coronavirus Disease 2019 (COVID-19) Pandemic in London. Clinical Infectious Diseases, 73(7), e1870-e1877. https://doi: 10.1093/cid/ciaa905
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.