Phytochemical analysis of compounds of therapeutic interest from the mistletoe Psittacanthus Calyculatus located on the hill of Palenque in Purísima del Rincón, Guanajuato
SPA_pdf (Español (España))
ENG_pdf

Keywords

extract
phytochemical
Psittacanthus calyculatus
antioxidant
analysis

Métricas de PLUMX 

Abstract

Psittacanthus calyculatus is a significant pest in Mexico distributed in the center and south, causing economic losses. To find an added value, a phytochemical profile was carried out to identify compounds with therapeutic activity. Two extraction methods were performed: methanol/acetone/water and aqueous. The phytochemical identification was through the use of reagents that caused a change in coloration, evidencing phenols, flavonoids, alkaloids, among others. Phenols were quantified by Folin-Ciocalteu, finding a higher concentration (p< 0.03) in aqueous flower extraction (EAF) (32.84 ± 1.2 mg EAG/ml) than in methanol/acetone/flower water extraction (EMAAF), leaf extraction methanol/acetone/water (EMAAH) and aqueous leaf extraction (EAH) (13.71 ± 1, 20.1 ± 0.3, 12.39 ± 0.4 mg EAG/ml, respectively). Flavonoids were quantified by colorimetry, finding a higher concentration in EAF (49.8 ± 2 mg EC/ml) (p≤0.02) with respect to EMAAF, EMAAH and EAH (9.5 ±1, 20.4 ± 0.5 and 10.3 ± 5 mg EC/ml , respectively). The antioxidant activity was measured by DPPH, all the extracts showed antioxidant activity, according to the IC50 value for EMAAF and EMAAH they were 0.058 and 0.0035 mg/ml (p<0.03) respectively, for EAF and EAH they were 0.15 and 0.08 mg/ml (p<0.03) respectively. These results suggest that Psittacanthus calyculatus has an important antioxidant activity, this may be due to its phytochemical content, which suggests that this plant may be an important source of natural nutrients, with chemotherapeutic activity.

https://doi.org/10.15741/revbio.11.e1572
SPA_pdf (Español (España))
ENG_pdf

References

Agunos, R. I. F., Mendoza, D. V. M., & Rivera, M. A. S. (2020). Anthocyanin Colorimetric Strip for Volatile Amine Determination. International Journal of Food Science, 2020(3), 1–7. https://doi.org/10.1155/2020/1672851

Alharits, L., Handayani, W., Yasman, & Hemelda, N. M. (2019). Phytochemical analysis and antioxidant activity of leaves and flowers extracts of mistletoe (Dendrophthoe pentandra (L.) Miq.), collected from UI Campus, Depok. AIP Conference Proceedings, 2168(1):020101. https://doi.org/10.1063/1.5132528

Appenteng, M. K., Krueger, R., Johnson, M. C., Ingold, H., Bell, R., Thomas, A. L., & Greenlief, C. M. (2021). Cyanogenic Glycoside Analysis in American Elderberry. Molecules, 26(5), 1384. https://doi.org/10.3390/molecules26051384

Archana, P., Samatha, T., Mahitha, B., & Ramaswamy, N. (2012). Preliminary phytocal screening from leaf and seed extracts of Senna alata L. International Journal of Biological & Pharmaceutical Research , 3(3), 82–89. https://www.researchgate.net/publication/308802406_Preliminary_phytochemical_screening_from_leaf_and_seed_extracts_of_Senna_alata_L_Roxb-an_Ethnomedicinalplant

Azpeitia, F., & Lara, C. (2006). Reproductive Biology and Pollination of the Parasitic Plant Psittacanthus Calyculatus (loranthaceae) in Central México. The Journal of the Torrey Botanical Society, 133(3), 429–438. http://dx.doi.org/10.3159/1095-5674(2006)133[429:RBAPOT]2.0.CO;2

Bah, M., Gutiérrez-Avella, D.M., Fuentes-Ordaz, R., Castañeda-Moreno, R. & Martínez, M. (2011). Chemical constituents of the mexican mistletoe (psittacanthus calyculatus). Molecules, 16(11), 9397–9403. https://doi.org/10.3390/molecules16119397

Budau, R., Memete, A., Timofte, A., & Vicas, S. (2022). Phytochemical screening and antioxidant capacity of two berry cultivars, ‘Ruben’ and ‘Duke’, depending on their harvesting time. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Science and Technology, 79(1). https://doi.org/10.15835/BUASVMCN-FST:2022.000

Bulugahapitiya, V. P. (2013). Plants Based Natural products Extraction, Isolation and Phytochemical screening methods. https://www.researchgate.net/publication/324136585

Che Sulaiman, I. S., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 54. https://doi.org/10.1186/s13065-017-0285-1

Cuevas-Reyes, P., Pérez-López, G., Maldonado-López, Y., & González-Rodríguez, A. (2017). Effects of herbivory and mistletoe infection by Psittacanthus calyculatus on nutritional quality and chemical defense of Quercus deserticola along Mexican forest fragments. Plant Ecology, 218(6), 687–697. https://doi.org/10.1007/S11258-017-0721-2/METRICS

Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001

Egbuonu A. C. Cemaluk. (2012). Phytochemical properties of some solvent fractions of petroleum ether extract of the African mistletoe (Loranthus micranthus Linn) leaves and their antimicrobial activity. African Journal of Biotechnology, 11 (62), 12595–12599. https://doi.org/10.5897/AJB11.2970

Franz, H., Ziska, P., & Kindt, A. (1981). Isolation and properties of three lectins from mistletoe (Viscum album L.). Biochemical Journal, 195(2), 481–484. https://doi.org/10.1042/bj1950481

García-García, J. D., Anguiano-Cabello, J. C., Arredondo-Valdés, R., Del Toro, C. A. C., Martínez-Hernández, J. L., Segura-Ceniceros, E. P., Govea-Salas, M., González-Chávez, M. L., Ramos-González, R., Esparza-González, S. C., Ascacio-Valdés, J. A., López-Badillo, C. M., & Ilyina, A. (2021). Phytochemical characterization of phoradendron bollanum and viscum album subs. Austriacum as mexican mistletoe plants with antimicrobial activity. Plants, 10(7), 1–16. https://doi.org/10.3390/plants10071299

García-Granados, R. U., Cruz-Sosa, F., Alarcón-Aguilar, F. J., Nieto-Trujillo, A., & Gallegos-Martínez., M. E. (2019). Análisis fitoquímico cualitativo de los extractos acuosos de thalassia testudinum banks ex köning et sims de la localidad de champotón, campeche, méxico, durante el ciclo anual 2016-2017. Polibotánica, 48(24), 151–168. https://doi.org/10.18387/polibotanica.48.12

Godlewska, K., Pacyga, P., Szumny, A., Szymczycha-Madeja, A., Wełna, M., & Michalak, I. (2022). Methods for Rapid Screening of Biologically Active Compounds Present in Plant-Based Extracts. Molecules, 27(20), 7094. https://doi.org/10.3390/molecules27207094

Harborne, J. B. (1998). Phytochemical methods : a guide to modern techniques of plant analysis. Chapman and Hall. https://link.springer.com/book/9780412572609

Hernández Rodríguez, P., Pabón Baquero, L. C., & Rodríguez Álvarez, M. F. (2015). Propiedades químicas y biológicas de Arbutus unedo: una planta con potencial medicina. Revista Cubana de Farmacia,49(1), 144–155. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152015000100014

Hlophe, S., & Bassey, K. (2023). Phytochemical Profiling, and Antioxidant Potentials of South African and Nigerian Loranthus micranthus Linn.: The African Mistletoe Exposé. Plants, 12(10). https://doi.org/10.3390/plants12102016

Hong, S. M., Choi, J. H., Jo, S. J., Song, S. K., Lee, J. M., & Kusakabe, T. (2015). Expression of recombinant viscum album coloratum lectin B-chain in the silkworm expression system and evaluation of antioxidant activity. Biotechnology and Bioprocess Engineering, 20, 515–522. https://doi.org/10.1007/S12257-014-0806-X

Ibarra-Alvarado, C., Rojas, A., Mendoza, S., Bah, M., Gutiérrez, D. M., Hernández-Sandoval, L., & Martínez, M. (2010). Vasoactive and antioxidant activities of plants used in Mexican traditional medicine for the treatment of cardiovascular diseases. Pharmaceutical Biology, 48(7), 732–739. https://doi.org/10.3109/13880200903271280

Khattak, U., Rehmanullah, Khan, S. A., Barkatullah, & Ullah, S. (2017). Pharmacognostic evaluation and analgesic efficacy of ethanolic extract of euphorbia dracunculoides L. Pharmacognosy Journal, 9(5), 644–653. https://doi.org/10.5530/pj.2017.5.102

Kleszken, E., Purcarea, C., Pallag, A., Ranga, F., Memete, A. R., Miere, F., & Vicas, S. I. (2022). Phytochemical Profile and Antioxidant Capacity of Viscum album L. Subsp. album and Effects on Its Host Trees. Plants, 11(22), 3021. https://doi.org/10.3390/PLANTS11223021/S1

Lohézic-Le Dévéhat, F., Bakhtiar, A., Bézivin, C., Amoros, M., & Boustie, J. (2002). Antiviral and cytotoxic activities of some Indonesian plants. Fitoterapia, 73(5), 400–405. https://doi.org/10.1016/S0367-326X(02)00125-9

Luczkiewicz, M., Cisowski, W., Kaiser, P., Ochocka, R., & Piotrowski, A. (2001). Comparative analysis of phenolic acids in mistletoe plants from various hosts. Acta Poloniae Pharmaceutica, 58(5), 373–379. https://pubmed.ncbi.nlm.nih.gov/11876445/

Mapfumari, S., Nogbou, N. D., Musyoki, A., Gololo, S., Mothibe, M., & Bassey, K. (2022). Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. Plants, 11(16). https://doi.org/10.3390/plants11162094

Masangwa, J. I. G., Aveling, T. A. S., & Kritzinger, Q. (2013). Screening of plant extracts for antifungal activities against Colletotrichum species of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp). Journal of Agricultural Science, 151(4), 482–491. https://doi.org/10.1017/S0021859612000524

Miere, F., Teușdea, A. C., Laslo, V., Cavalu, S., Fritea, L., Dobjanschi, L., Zdrinca, M., Zdrinca, M., Ganea, M., Pașc, P., Memete, A. R., Antonescu, A., Vlad, A. M., & Vicas, S. I. (2021). Evaluation of in vitro wound-healing potential, antioxidant capacity, and antimicrobial activity of stellaria media (L.) vill. Applied Sciences (Switzerland), 11(23), 11526. https://doi.org/10.3390/APP112311526/S1

Mothana, R. A. A., Al-Said, M. S., Al-Rehaily, A. J., Thabet, T. M., Awad, N. A., Lalk, M., & Lindequist, U. (2012). Anti-inflammatory, antinociceptive, antipyretic and antioxidant activities and phenolic constituents from Loranthus regularis Steud. ex Sprague. Food Chemistry, 130(2), 344–349. https://doi.org/10.1016/J.FOODCHEM.2011.07.048

Msaada, K., Jemia, M. Ben, Salem, N., Bachrouch, O., Sriti, J., Tammar, S., Bettaieb, I., Jabri, I., Kefi, S., Limam, F., & Marzouk, B. (2017). Antioxidant activity of methanolic extracts from three coriander (Coriandrum sativum L.) fruit varieties. Arabian Journal of Chemistry, 10 (S2), S3176–S3183. https://doi.org/10.1016/j.arabjc.2013.12.011

Naikwade, P. (2014). Effect of drying methods on nutritional value of some vegetables. In Proceeding of the National Conference on Conservation of Natural Resources & Biodiversity for Sustainable Development. Biosci. Discov , 6, 72–79. https://www.researchgate.net/publication/323377458

Ochoa-Cruz, Z., Molina-Torres, J., Angoa-Pérez, M. V., Cárdenas-Valdovinos, J. G., García-Ruiz, I., Ceja-Díaz, J. A., Bernal-Gallardo, J. O., & Mena-Violante, H. G. (2023). Phytochemical Analysis and Biological Activities of Ripe Fruits of Mistletoe (Psittacanthus calyculatus). Plants, 12(12), 1689. – 1699. https://doi.org/10.3390/PLANTS12122292

Ohikhena, F., Wintola, O., & Afolayan, A. J. (2018). Quantitative Phytochemical Constituents and Antioxidant Activities of the Mistletoe, Phragmanthera capitata (Sprengel) Balle Extracted with Different Solvents. Pharmacognosy Research, 10(1), 16–23. https://doi.org/10.4103/PR.PR_65_17

Olugbami, J. O., Gbadegesin, M. A., & Odunola, O. A. (2014). In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. African Journal of Medicine and Medical Sciences, 43(Suppl 1), 101–109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679201/

Orhan, D. D., Senol, F. S., Hosbas, S., & Orhan, I. E. (2014). Assessment of cholinesterase and tyrosinase inhibitory and antioxidant properties of Viscum album L. samples collected from different host plants and its two principal substances. Industrial Crops and Products, 62, 341–349. https://doi.org/10.1016/J.INDCROP.2014.08.044

Pallag, A., Tit, D. M., & Tünde, J. (2016). Comparative Study of Polyphenols, Flavonoids and Chlorophylls in Equisetum arvense L. Populations. Revista de Chimie, 67(3), 530–533. https://www.researchgate.net/publication/303578834

Park, J. H., Hyun, C. K., & Shin, H. K. (1999). Cytotoxic effects of the components in heat-treated mistletoe (Viscum album). Cancer Letters, 139(2), 207–213. https://doi.org/10.1016/S0304-3835(99)00043-9

Phuyal, A., Ojha, P. K., Guragain, B., & Chaudhary, N. K. (2019). Phytochemical screening, metal concentration determination, antioxidant activity, and antibacterial evaluation of Drymaria diandra plant. Beni-Suef University Journal of Basic and Applied Sciences, 8(1), 1–9. https://doi.org/10.1186/s43088-019-0020-1

Queijeiro-Bolaños, M. E., Malda-Barrera, G. X., Carrillo-Angeles, I. G., & Suzán-Azpiri, H. (2020). Contrasting gas exchange effects on the interactions of two mistletoe species and their host Acacia schaffneri. Journal of Arid Environments, 173, 104041. https://doi.org/10.1016/J.JARIDENV.2019.104041

Quintana-Rodríguez, E., Ramírez-Rodríguez, A. G., Ramírez-Chávez, E., Molina-Torres, J., Camacho-Coronel, X., Esparza-Claudio, J., Heil, M., & Orona-Tamayo, D. (2018). Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass. Frontiers in Plant Science, 9(1031), 1–13. https://doi.org/10.3389/FPLS.2018.01031

Reynoso Silva, M., Alvarez Moya, C., Fernando Landeros-Gutierrez, J., Macedonio Garcia-López, P., & Alberto Ruiz-López, M. (2022). Antigenotoxic and antimutagenic activities of Psittacanthus calyculatus (Loranthaceae) leaves water extract. Natural Resources for Human Health, 2(2), 150–155. https://doi.org/10.53365/nrfhh/144010

Sagrin, M. S., & Chong, G. H. (2013). Effects of drying temperature on the chemical and physical properties of Musa acuminata Colla (AAA Group) leaves. Industrial Crops and Products, 45, 430–434. https://doi.org/10.1016/j.indcrop.2012.12.036

Santhi, K., & Sengottuvel, R. (2016). Qualitative and Quantitative Phytochemical analysis of Moringa concanensis Nimmo. International Journal of Current Microbiology and Applied Sciences, 5(1), 633–640. https://doi.org/10.20546/ijcmas.2016.501.064

Saura-Calixto, F., Serrano, J., & Goñi, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492–501. https://doi.org/10.1016/j.foodchem.2006.02.006

Serrano-Maldonado, M.J., Guerrero-Legarreta, I., Pérez-Olvera, C. de la Paz, & Soriano-Santos, J. (2011). Actividad antioxidante y efecto citotóxico de Cladocolea loniceroides (van Tieghem) Kuijt (Loranthaceae). Revista Mexicana de Ingeniería Química, 10(2), 161–170. http://www.redalyc.org/articulo.oa?id=62020825001

Simirgiotis, M. J., Quispe, C., Areche, C., & Sepúlveda, B. (2016). Phenolic Compounds in Chilean Mistletoe (Quintral, Tristerix tetrandus) Analyzed by UHPLC–Q/Orbitrap/MS/MS and Its Antioxidant Properties. Molecules, 21(3). https://doi.org/10.3390/MOLECULES21030245

Suchismita, D., Rayaguru, K., & Ranjan Sahoo, G. (2012). Effect of Drying Methods on Quality Characteristics of Medicinal Indian Borage (Coleus aromaticus) Leaves. Journal of Food Processing & Technology, 2012, 3(11), 1-6. https://doi.org/10.4172/2157-7110.1000188

Szurpnicka, A., Kowalczuk, A., & Szterk, A. (2020). Biological activity of mistletoe: in vitro and in vivo studies and mechanisms of action. Archives of Pharmacal Research, 43(6), 593–629. https://doi.org/10.1007/s12272-020-01247-w

Torres, P., Saldaña, C., Ortega, R., & González, C. (2019). Determination of reducing power and phytochemical profile of the chilean mistletoe “quintral” (Tristerix corymbosus (l) kuijt) hosted in “maqui” (Aristotelia chilensis), “huayún” (Rhaphitamnus spinosus) and “poplar” (Populus nigra). Journal of the Chilean Chemical Society, 64(4), 4645–4650. https://doi.org/10.4067/S0717-97072019000404645

Vicaş, S. I., RuginǍ, D., Leopold, L., Pintea, A., & Socaciu, C. (2011). HPLC Fingerprint of bioactive compounds and antioxidant activities of Viscum album from different host trees. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 48–57. https://doi.org/10.15835/nbha3913455

Wacker, R., Stoeva, S., Pfüller, K., Pfüller, U., & Voelter, W. (2004). Complete structure determination of the A chain of mistletoe lectin III from Viscum album L. ssp. album. Journal of Peptide Science, 10(3), 138–148. https://doi.org/10.1002/psc.505

Waly, N. M., El Din Ali, A. E., & Jrais, R. N. (2012). Botanical and Biological studies of six parasitic species of family Loranthaceae growing in Kingdom of Saudi Arabia. International Journal of Environmental Sciences Waly et. Al, 1(4), 196–205. http://www.crdeepjournal.org/wp-content/uploads/2012/10/Vol-141-IJES.pdf

Wintola, O. A., & Afolayan, A. J. (2011). Phytochemical constituents and antioxidant activities of the whole leaf extract of Aloe ferox Mill. Pharmacognosy Magazine, 7(28), 325–333. https://doi.org/10.4103/0973-1296.90414

Xie, W., Adolf, J., & Melzig, M. F. (2017). Identification of Viscum album L. miRNAs and prediction of their medicinal values. Plos One, 12(11), e0187776. https://doi.org/10.1371/journal.pone.0187776

Xoca-Orozco, L. A., Cortez-Fonseca, K., Luna-López, C., Hernández-Mendoza, G., Flores-Sierra, J. de J., Chacón-López, M. A., & Aguilera-Aguirre, S. (2022). Inhibición in vitro de hongos fitopatógenos utilizando extractos de muérdago mexicano (Psittacanthus calyculatus). Ecosistemas y Recursos Agropecuarios, 9(3). https://doi.org/10.19136/era.a9n3.3431

Yao, X., Zhu, L., Chen, Y., Tian, J., & Wang, Y. (2013). In vivo and in vitro antioxidant activity and α-glucosidase, α-amylase inhibitory effects of flavonoids from Cichorium glandulosum seeds. Food Chemistry, 139(1–4), 59–66. https://doi.org/10.1016/J.FOODCHEM.2012.12.045

Zakaria, S. M., & Kamal, S. M. M. (2016). Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Engineering Reviews, 8(1), 23–34. http://dx.doi.org/10.1007/s12393-015-9119-x

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.