Seed germination and seedling vigor of apaxtleco peppers in response to 60Co gamma radiation
SPA_pdf (Español (España))
ENG_pdf

Keywords

Capsicum
germination
mutagenesis
radiation
seed

Métricas de PLUMX 

Abstract

The effect of gamma radiation on seed germination and seedling vigor of apaxtlecos chiles was studied. The factors studied were dose of irradiation to the seed with gamma rays with 60Co (0, 50, 100, 150, 200, 250 and 300 Gy) and genotypes of apaxtleco chili (Chinese Ancho 1, Chinese Ancho 2 and Plain Ancho), in a completely randomized design, with three repetitions for germination (in the laboratory and greenhouse) and 10 for M1 seedling vigor (in the greenhouse). Irradiation with 100 and 300 Gy stimulated germination in the laboratory, but with 150 Gy it was reduced in the greenhouse. Seedling height decreased, except with 50 Gy. The size (diameter and length) of seedling stem increased with 0 to 150 Gy; and fresh weight with 0 to 50 Gy and 250 to 300 Gy. The number of leaves decreased with more than 250 Gy and their fresh weight increased with 50 and 300 Gy. There was greater root length with 50 and 100 Gy. The outstanding genotype was Ancho chino 1. The results provide information on the behavior of the seed and the vigor of the apaxtlecos chili seedling by 60Co gamma irradiation.

https://doi.org/10.15741/revbio.11.e1591
SPA_pdf (Español (España))
ENG_pdf

References

Aguilar-Rincón, V. H., Corona, T. T., López, L. P., Latournerie, M. L., Ramírez, M. M., Villalón, M. H., & Aguilar, C. J. A. (2010). Los chiles de México y su distribución. SINAREFI. Colegio de Postgraduados, INIFAP, IT-Conkal, UANL, UAN. Montecillo, Texcoco, Estado de México. 114 p.

Aguirre, H. E. & Muñoz, O. V. (2015). El chile como alimento. Ciencia 16-23.

Aisha, A. H., Rafii, M. Y., Rahim, H. A., Juraimi, A. S., Misran, A., & Oladosu, Y. F. (2018). Radio-Sensitivity Test Of Acute Gamma Irradiation Of Two Variety Of Chili Pepper Chili Bangi 3 And Chili Bangi 5. International Journal of Scientific & Technology Research 7 (12): 90-95.

Albokari, M. M. A., Alzahrani, S. M., & Alsalman, A. S. (2012). Radiosensitivity of some local cultivars of wheat (Triticum aestivum L.) to gamma irradiation. Bangladesh Journal of Botany 41 (1): 1-5.

Alikamanoglu, S., Yaycili, O., & Sen, A. 2011. Effect of Gamma Radiation on Trace Elements in Soybean Plants. Biological Trace Element Research 141: 283-293. https://doi.org/10.1007/s12011-010-8709-y

Álvarez, A., Ramírez, R., Chávez, L., Camejo, Y., Licea, L., Porras, E., & García, B. (2011). Efectos del tratamiento de semillas con láser de baja potencia sobre el crecimiento y rendimiento en plantas de tomate (Solanum lycopersicum L.). Información Técnica Económica Agraria 107 (4): 290-299.

Álvarez, F. A., Chávez, S. L., Ramírez, F. R., Pompa, B. R., & Estrada, P. W. (2012). Indicadores fisiológicos en plántulas de Solanum lycopersicum L., procedentes de semillas irradiadas con rayos X. Biotecnología Vegetal 12(3): 173-177.

Araiza, L. N., Araiza, L. E., & Martínez, M. J. G. (2011). Evaluación de la germinación y crecimiento de plántula de chiltepín (Capsicum annuum L. variedad glabriusculum) en invernadero. Revista Colombiana de Biotecnología 13(2): 170-175.

Araujo S. D. S., Paparella S., Dondi D., Bentivoglio A., Carbonera D., & Balestrazzi A. (2016). Physical methods for seed invigoration: advantages and challenges in seed technology. Frontiers in Plant Science 7: 646. https://doi.org/10.3389/fpls.2016.00646

Bañuelos, N., Salido, P. L., & Gardea, A. (2008). Etnobotánica del chiltepín. Pequeño gran señor en la cultura de los sonorenses. Estudios Sociales (Hermosillo, Sonora) 16(32): 177-205.

Beyaz, R., Kahramanogullari, C. T., Yildiz, C., Darcin, E. S., & Yildiz, M. (2016). The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. under in vitro conditions. Journal of Environmental Radioactivity 162-163: 129-133. https://doi.org/10.1016/j.jenvrad.2016.05.006

Borzouei, A., Naseriyan, B., Majdabadi, A., Kafi, M., & Khazaei, H. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pakistan Journal of Botany 42(4): 2281-2290.

Contreras, T., Aremi, R., López, S. H., Santacruz, V. A., Valadez, M. E., Aguilar, R. V. H., Corona, T. T., & López, P. A. (2011). Diversidad Genética en México de variedades nativas de chile 'poblano' mediante microsatélites. Revista Fitotecnia Mexicana 34 (4): 225-232.

Croseños-Palazin, M. I., Antúnez-Ocampo, O. M., Sabino-López, J. E., Espinosa-Rodríguez, M., & Cruz-Izquierdo S. (2023). Cambios herméticos por efecto de radiación gamma 60Co en plantas M1 de chile apaxtleco. Ecosistemas y Recursos Agropecuarios. 10(2): e3444. https://doi.org/10.19136/era.a10n2.3444

De Micco, V., Paradiso, R., Aronne, G., De Pascale, S., Quarto, M., & Arena, C. (2014). Leaf anatomy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal 2014: 428141. https://doi.org/10.1155/2014/428141

Esnault, M., Legue, F., & Chenal, C. (2010). Ionizing radiation: Advances in plant response. Environmental and Experimental Botany 68 (3): 231-237. https://doi.org/10.1016/j.envexpbot.2010.01.007

FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). (2022). Producción mundial de chiles, pimientos picantes, pimientos (verdes) http://www.fao.org/faostat/es/#home.

FAO/OIEA. (2021). Manual de mejoramiento por mutación – Tercera edición. Spencer-Lopes, M.M., Forster, B.P. y Jankuloski, L. (coords.), Viena, FAO. https://www.fao.org/documents/card/en/c/i9285es.

Hasbullah, N., Taha, R., Saleh, A., & Mahmad, N. (2012). Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Horticultura Brasileira 30(2): 252-257. https://doi.org/10.1590/S0102-05362012000200012

Hegazi, A., Z., & Hamideldin, N. (2010). The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. Journal of Horticulture and Forestry 2(3): 38-51.

Hernández-Muñoz, S., Pedraza-Santos, M. E., López, P. A., Gómez-Sanabria, J. M., & Morales-García, J. L. (2019). Mutagenesis in the improvement of ornamental plants. Revista Chapingo Serie Horticultura 25 (3): 151-167. https://doi.org/10.5154/r.rchsh.2018.12.022

Hernández-Verdugo, S., López-España, R. G., Porras, F., Parra-Terraza, S. T., Villarreal-Romero, M., & Osuna-Enciso, T. (2010). Variación en la germinación entre poblaciones y plantas de chile silvestre. Agrociencia 44(6): 667-677.

Jafarov, E. S., Guliyeva, N. R., Babayev, H. G., Gojaeva, G. A., & Mamedova, G. A. (2020). Role of Pre-Sowing Gamma-Irradiation of Seeds in the Salt-Resistance of Phaseolus vulgaris L. Journal of Stress Physiology & Biochemistry 16 16(3): 116-125.

Jaipo, N., Kosiwikul, M., Panpuang, N., & Prakrajang, K. (2019). Low dose gamma radiation effects on seed germination and seedling growth of cucumber and okra. Journal of Physics: Conference Series 1380 (1): 012106. https://doi.org/10.1088/1742-6596/1380/1/012106

Jan, S., Parween, T., Siddiqi, T. O., & Mahmooduzzafar. (2012). Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environmental Reviews 20 (1): 17-39.

Jan, S., Parween, T., Hameed, R., Siddiqi T. O., & Mahmooduzzafar. (2013). Effects of presowing gamma irradiation on the photosynthetic pigments, sugar content and carbon gain of Cullen corylifolium (L.) Medik. Chilean journal of agricultural research 73(4), 345-350. http://dx.doi.org/10.4067/S0718-58392013000400003

Jo, Y. D., Kim, S. H., Hwang, J. E., Kim, Y. S., Kang, H. S., Kim, S. W., Kwon, S. J., Ryu, J., Kim, J. B. & Kang, S. Y. (2016). Construction of mutation populations by gamma-ray and carbon beam irradiation in chili pepper (Capsicum annuum L.). Horticulture, Environment, and Biotechnology 57: 606-614. https://doi.org/10.1007/s13580-016-1132-3

Kara, Y., Ertem, V. H. & Kuru, A. (2016). Gamma radiation effects on crude oil yield of some soybean seeds: Functional properties and chemical composition of glycine max-ataem-7 seeds. Tropical Journal of Pharmaceutical Research 15(12): 2579-2585. https://doi.org/10.4314/tjpr.v15i12.7

Khah, M. A., & Verma, R. C. (2017). Effect of gamma irradiation on seed germination and chromosomal behaviour at meiotic division in bread wheat (Triticum aestivum L.). The Journal of Indian Botanical Society 96(3): 209-215.

Lagoda, P. J. L. (2012). Effects of radiation on living cells and plants. In: Shu, Q. Y., Forster, B. F., & Nakagawa, H. (Eds.), Plant mutation breeding and biotechnology (pp.123-134). Italy: CAB International and FAO. https://doi.org/10.1079/9781780640853.012

Lemus, Y., Méndez-Natera, J. R., Cedeño, J. R., & Otahola-Gómez, V. (2002). Radiosensibilidad de dos genotipos de frijol (Vigna unguiculata L. Walp) a radiaciones gamma). Revista UDO Agrícola 2(1): 22-28.

Liu, B., Wu Y., Xu, X., Song, M., Zhao, M. & Fu, X. D. (2008). Plant height revertants of Dominant Semidwarf mutant rice created by low-energy ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 (7): 1099-1104. https://doi.org/10.1016/j.nimb.2008.02.045

López-Mendoza, H., Carrillo-Rodríguez, J.C., & Chávez-Servia, J.L. (2012). Effects of Gamma-Irradiated Seeds on Germination and Growth in Capsicum annuum L. Plants Grown in a Greenhouse. Acta Horticulturae 947: 77-81. https://doi.org/10.17660/ActaHortic.2012.947

Macovei, A., Garg, B., Raikwar, S., Balestrazzi ,A., Carbonera, D., Buttafava, A., Jiménez, B. J. F., Sarvajeet Singh, G. S., & Tuteja, N. (2014). Synergistic Exposure of Rice Seeds to Different Doses of ϒ-Ray and Salinity Stress Resulted in Increased Antioxidant Enzyme Activities and Gene-Specific Modulation of TC-NER Pathway. BioMed Research International 2014(67634): 15 p. https://doi.org/10.1155/2014/676934

Marcu, D., Cristea, V. & Daraban, L. (2013a). Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings. International Journal of Radiation Biology 89 (3): 219-223. https://doi.org/10.3109/09553002.2013.734946

Marcu, D., Damian, G., Cosma, C. & Cristea, V. (2013b). Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). Journal of Biological Physics 39(4): 625-634. https://doi.org/10.1007/s10867-013-9322-z

Mazvimbakupa, F., Modi, A. T., & Mabhaudhi, T. (2015). Seed quality and water use characteristics of maize landraces compared with selected commercial hybrids. Chilean Journal of Agricultural Research 75(1):13-20.

Meitei, T. R., Thokchom, R., Bhaigyabati, T. & Chanu, A. M. (2020). Response of radioactive cobalt ( 60Co) teletherapy on M1 plants of Capsicum chinense Jacq. Revista de innovación farmacéutica 9(11): 87-91. https://doi.org/10.22271/tpi.2020.v9.i11b.5320

Nasab, S., Sharifi-Sirchi, G., & Torabi-Sirchi, H. (2010). Assessment of dissimilar gamma irradiations on barley Hordeum vulgare spp. Journal of Plant Breeding and Crop Science 2 (4): 59-63.

Oladosu, Y., Rafii, M.Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H.A., Miah, G. & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology & Biotechnological Equipment 30 (1): 1-16. https://doi.org/10.1080/13102818.2015.1087333

Omar, S. R., Ahmed, O. H, Saamin, S., & Majid, N. M. A. (2008). Gamma Radiosensitivity Study on Chili (Capsicum annuum). American Journal of Applied Sciences 5 (2): 67-70.

Pérez-Castañeda, L., Castañón-Nájera, G., Ramírez-Meraz, M. & Mayek-Pérez, N. (2015). Avances y perspectivas sobre el estudio del origen y la diversidad Genética de Capsicum spp. Ecosistemas y Recursos Agropecuarios 2 (4):117-128.

Piri, I., Babayan, M., Tavassoli, A., & Javaheri, M. (2011). The use of gamma irradiation in agricultura. African Journal of MicrobiologBy Research 5 (32): 5806-5811. https://doi.org/10.5897/AJMR11.949

Rangel-Castillo, A. E., Iturriaga, G., Ramírez-Pimentel, J. G. Ángeles-Santos, A., García-Andrade, J. M., Covarrubias-Prieto, J. & Aguirre-Mancilla, C. L. (2022). Effect of the physical mutagenesis with 60Co on jalapeño pepper seed quality. Chilean Journal of Agricultural Research 82 (3): 390-398. https://doi.org/10.4067/S0718-58392022000300390

Rassam, Y. Z., Boya, A. F & Mashhadani, F. A. A. (2012). Laser treatment may enhance growth and resistance to fungal infection of hard wheat seeds. Middle East Journal of Agriculture Research 1 (1): 1-5.

Reyes-Pérez, J. J., Murillo-Amador, B., Nieto-Garibay, A., Troyo-Diéguez, E., Reynaldo-Escobar, I. M. & Rueda-Puente, E. O. (2013). Germinación y características de plántulas de variedades de albahaca (Ocimum basilicum L.) sometidas a estrés salino. Revista Mexicana de Ciencias Agrícolas 4(6): 869-880. https://doi.org/10.29312/remexca.v4i6.1155

Saputro, T. B., Muslihatin, W., Wahyuni, D. K., Nurhidayati, T., Wardhani, F. O. & Rosalia, E. (2019). Variation induction of Glycine max through low dose gamma irradiation produces genetic and physiological alteration as source of tolerant variants in waterlogging conditions. Biodiversitas Journal of Biological Diversity 20 (11) :3299-3308. https://doi.org/10.13057/biodiv/d201124

Song, J. Y., Kim, D. S., Lee, M.-C., Lee, K. J., Kim, J. B., Kim, S. H., Ha, B.-K., Yun, S. J., & Kang, S.-Y. (2012). Physiological characterization of gamma-ray induced salt tolerant rice mutants. Australian Journal of Crop Science 6 (3): 421-429.

Thisawech, M., Saritnum, O., S. Sarapirom, S., Prakrajang, K. & Phakham, W. (2020). Effects of Plasma Technique and Gamma Irradiation on Seed Germination and Seedling Growth of Chili Pepper. Chiang Mai Journal of Science 47(1): 73-82.

Thole, V., Perald,i A., Worland, B., Nicholson, P., Doonan, J. H. & Vain, P., (2011). T-DNA mutagenesis in Brachypodium distachyon. Journal of Experimental Botany 63(2): 567-576. https://doi.org/10.1093/jxb/err333

Ulukapi, K., & Ozmen, S. F. (2018). Study of the effect of irradiation (60Co) on M1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. Journal of Radiation Research and Applied Sciences 11 (2): 157-161. https://doi.org/10.1016/j.jrras.2017.12.004

Vázquez, D., Salas, P. L., González, J. A., De la Cruz, E., Sánchez, E. & Preciado, P. (2020). Commercial and nutraceutical quality Jalapeño pepper affected by salicylic and acid levels. Interciencia 45(9): 423-427.

Vázquez-Casarrubias, G., Escalante-Estrada, J. A. S., Rodríguez-González, Ma. T., Ramírez-Ayala, C., & Escalante-Estrada, L. E. (2011). Edad al trasplante y su efecto en el crecimiento y rendimiento de chile apaxtleco. Revista Chapingo Horticultura 17 (1): 61-65.

Viana, V. E., Pegoraro, C., Busanello, C. & Oliveira, A. C. (2019). Mutagénesis en arroz: La base para la cría de una nueva súper planta. Frontiers in Plant Science 10: 1326. https://doi.org/10.3389/fpls.2019.01326

Wang, X., Ma, R., Cui, D., Cao, Q., Shan, Z. & Jiao, Z. (2017). Physio-biochemical and molecular mechanism underlying the enhanced heavy metal tolerance in highland barley seedlings pre-treated with low-dose gamma irradiation. Scientific Reports 7(1):1-14. https://doi.org/10.1038/s41598-017-14601-8

Warade, C. A., Badere, R. S. & Kale, M. C. (2022). Effect of gamma irradiation on seed germination and seedling growth of Capsicum annum L. International Journal of Researches in Biosciences, Agriculture and Technology 10(1): 37-42.

Wiendl, T. A., Wiendl, F. W., Franco, S. S., Franco, J. G., Althur, V., & Arthur, P. B. (2013). Effects of gamma radiation in tomato seeds. International Nuclear Atlantic Conference. Recife. 24–29 November. Associação Brasileira de Energia Nuclear. Rio de Janeiro, Brazil. URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/45/084/45084467.pdf

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.