Dalea carthagenensis una nueva fuente de compuestos antioxidantes: Identificación de polifenoles y actividad antifúngica contra Rhizopus stolonifer en yaca
PDF (Español (España))

Keywords

Rhizopus stolonifer
Jackfruit
Dalea carthagenensis
Plant extract

Métricas de PLUMX 

Abstract

The soft rot caused by Rhizopus stolonifer is the most important disease in jackfruits. Currently, the control of this phytopathogen is achieved with toxic fungicides. Due to this, the control of R. stolonifer is sought through natural alternatives such as plant extracts. This study aimed to identify the compounds in Dalea carthagenensis extract and evaluate its antifungal potential against important postharvest phytopathogens. The antioxidant activity of the extract and the in vitro activity against Penicillium italicum, Colletotrichum gloeosporioides, and R. stolonifer were evaluated. The chemical compounds were identified by HPLC-UV-Vis and the in vivo antifungal activity was assessed against R. stolonifer in jackfruit. The extract presented an antioxidant activity of 48.34 ± 1.3 mg TE/g dw and a total phenolic content of 52.23 ± 0.57 mg GAE/g dw. P. italicum, C. gloeosporioides, and R. stolonifer were inhibited between 11.50-55.6%, 22.16-53.88%, and 27.46-79.71%, respectively. The most sensitive fungus was R. stolonifer with a minimum inhibitory concentration of 11.08 mg/mL. D. carthagenensis extract reduced the severity of soft rot by 59% in jackfruits and gallic acid and vanillin were the main compounds identified. In conclusion, D. carthagenensis extract is a promising alternative for managing soft rot disease in jackfruit at postharvest stage. The extract offers an eco-friendly control solution for jackfruit growers.

https://doi.org/10.15741/revbio.11.e1686
PDF (Español (España))

References

Aguilar‐Veloz, L. M., Calderón‐Santoyo, M., Vázquez-González, Y. & Ragazzo‐Sánchez, J. A. (2020). Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Science & Nutrition, 8(6), 2555–2568. https://doi.org/10.1002/fsn3.1437

Ayón-Macias, K. D., Ragazzo-Sánchez, J. A., Narváez-Zapata, J. A., Damasceno-Gomes, S. & Calderón-Santoyo, M. (2023). Meyerozyma strains as biocontrol agents against postharvest phytopathogens of jackfruit (Artocarpus heterophyllus Lam.). Archives of Phytopathology and Plant Protection, 56(15), 1180–1204. https://doi.org/10.1080/03235408.2023.2276098

Barros-Castillo, J. C., Calderón-Santoyo, M., Cuevas-Glory, L. F., Pino, J. A. & Ragazzo-Sánchez, J. A. (2021). Volatile profiles of five jackfruit (Artocarpus heterophyllus Lam.) cultivars grown in the Mexican Pacific area. Food Research International, 139. https://doi.org/10.1016/j.foodres.2020.109961

Bautista-Baños, S., Bosquez-Molina, E. & Barrera-Necha, L. L. (2014). Rhizopus stolonifer (Soft Rot). In Bautista-Baños, S. Postharvest Decay. (pp. 1–44). Ed. Elsevier. https://doi.org/10.1016/B978-0-12-411552-1.00001-6

Berenguer-Rivas, A. C., Mas-Ortiz, M., Batista-Corbal, P., Costa-Acosta, J. & Escalona-Arranz, J. C. (2018). Chemical composition and in-vitro antioxidant activity of extracts of Adelia ricinella L. Revista Cubana de Química, 30(2), 191–209. https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/3658

Calderón-Chiu, C., Calderón-Santoyo, M., Herman-Lara, E. & Ragazzo-Sánchez, J. A. (2021). Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, techno-functional properties and antioxidant capacity. Food Hydrocolloids, 112, 106319. https://doi.org/10.1016/j.foodhyd.2020.106319

Carvalho, R. S., Carollo, C. A., de Magalhães, J. C., Palumbo, J. M. C., Boaretto, A. G., Nunes e Sá, I. C., Ferraz, A. C., Lima, W. G., de Siqueira, J. M. & Ferreira, J. M. S. (2018). Antibacterial and antifungal activities of phenolic compound-enriched ethyl acetate fraction from Cochlospermum regium (mart. Et. Schr.) Pilger roots: Mechanisms of action and synergism with tannin and gallic acid. South African Journal of Botany, 114, 181–187. https://doi.org/10.1016/j.sajb.2017.11.010

Chaves, N., Santiago, A. & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076

Chen, F., Miao, X., Lin, Z., Xiu, Y., Shi, L., Zhang, Q., Liang, D., Lin, S. & He, B. (2021). Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against Shigella flexneri. Food Control, 130, 108282. https://doi.org/10.1016/j.foodcont.2021.108282

Covarrubias-Rivera, L., López-Cruz, R., Ragazzo-Sánchez, J. A., Iñiguez-Moreno, M. & Calderón-Santoyo, M. (2022). Determination by isothermal microcalorimetry of the sensitivity of phytopathogenic fungi of tropical fruits against an ethanolic extract of jackfruit leaf (Artocarpus heterophyllus Lam.). Journal of Microbiological Methods, 195, 106457. https://doi.org/10.1016/j.mimet.2022.106457

El-Nagar, A., Elzaawely, A. A., Taha, N. A. & Nehela, Y. (2020). The antifungal activity of gallic acid and its derivatives against Alternaria solani, the causal agent of tomato early blight. Agronomy, 10(9), 1402. https://doi.org/10.3390/agronomy10091402

Eleazu, C. O. (2016). Characterization of the natural products in cocoyam (Colocasia esculenta) using GC–MS. Pharmaceutical Biology, 54(12), 2880–2885. https://doi.org/10.1080/13880209.2016.1190383

Ghosh, R., Barman, S., Mukhopadhyay, A. & Mandal, N. C. (2015). Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biological Control, 83, 29–36. https://doi.org/10.1016/j.biocontrol.2014.12.020

González-Gutiérrez, K. N., Ragazzo-Sánchez, J. A., Barros-Castillo, J. C., Narváez-Zapata, J. A. & Calderón-Santoyo, M. (2023). Yeasts with potential biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass) and characterization of Yamadazyma mexicana mechanisms. European Journal of Plant Pathology, 165(3), 525–543. https://doi.org/10.1007/s10658-022-02625-4

González-Gutiérrez, K. N., Ragazzo-Sánchez, J. A. & Calderón-Santoyo, M. (2024). Bioformulation of Yamadazyma mexicana LPa14 by electrospraying process: Anthracnose control and effect on postharvest quality of avocado fruit. Biological Control, 190, 105449. https://doi.org/10.1016/j.biocontrol.2024.105449

Guarnaccia, V., Vitale, A., Cirvilleri, G., Aiello, D., Susca, A. & Epifani, F., Perrone, G. & Polizzi, G.(2016). Characterisation and pathogenicity of fungal species associated with branch cankers and stem-end rot of avocado in Italy. European Journal of Plant Pathology, 146, 963–976. https://doi.org/10.1007/s10658-016-0973-z

Hu, Z., Yuan, K., Zhou, Q., Lu, C., Du, L. & Liu, F. (2021). Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control, 123, 107703. https://doi.org/10.1016/j.foodcont.2020.107703

Hussin, N. M., Muse, R., Ahmad, S., Ramli, J., Mahmood, M., Sulaiman, M. R., Shukor, M. Y. A., Rahman, M. F. A. & Aziz, K. N. K. (2009). Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). African Journal of Biotechnology, 8(12), 2835–2842.

Kumar, M., Saurabh, V., Tomar, M., Hasan, M., Changan, S., Sasi, M., Maheshwari, C., Prajapati, U., Singh, S., Prajapat, R. K., Dhumal, S., Punia, S., Amarowicz, R. & Mekhemar, M. (2021). Mango (Mangifera indica L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Antioxidants, 10(2), 299. https://doi.org/10.3390/antiox10020299

Laribi, B., Amri, I., Bettaieb, T. & Hamrouni, L. (2021). Phytochemical evaluation and in vitro antifungal activities of Melaleuca styphelioides leaves: Comparison between volatile and non-volatile extracts. Plant Biosystems, 155(1), 54–63. https://doi.org/10.1080/11263504.2020.1727986

Lázaro, E., Makowski, D. & Vicent, A. (2021). Decision support systems halve fungicide use compared to calendar-based strategies without increasing disease risk. Communications Earth & Environment, 2(1), 224. https://doi.org/10.1038/s43247-021-00291-8

Lerma-Torres, J. M., Navarro-Ocaña, A., Calderón-Santoyo, M., Hernández-Vázquez, L., Ruiz-Montañez, G. & Ragazzo-Sánchez, J. A. (2019). Preparative scale extraction of mangiferin and lupeol from mango (Mangifera indica L.) leaves and bark by different extraction methods. Journal of Food Science and Technology, 56(10), 4625–4631. https://doi.org/10.1007/s13197-019-03909-0

Li, Q., Zhu, X., Zhong, Y. & Xie, Y. (2021). o -Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes. Applied Microbiology and Biotechnology, 105(12), 5147-5158. https://doi.org/10.1007/s00253-021-11371-2

Li, Q., Zhu, X., Zhao, Y. & Xie, Y. (2022). The antifungal activity of o-vanillin against Aspergillus flavus via disrupting ergosterol biosynthesis and promoting oxidative stress, and an RNA-seq analysis thereof. LWT - Food Science and Technology, 164, 113635. https://doi.org/10.1016/j.lwt.2022.113635

Li, Z., Liu, M., Dawuti, G., Dou, Q., Ma, Y., Liu, H. & Aibai, S. (2017). Antifungal activity of gallic acid in vitro and in vivo. Phytotherapy Research, 31(7), 1039–1045. https://doi.org/10.1002/ptr.5823

Liu, S., Lin, J., Wang, C., Chen, H. & Yang, D. (2009). Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chemistry, 114(2), 577–581. https://doi.org/10.1016/j.foodchem.2008.09.088

López, V., Akerreta, S., Casanova, E., García-Mina, J. M., Cavero, R. Y. & Calvo, M. I. (2007). In vitro antioxidant and anti-rhizopus activities of Lamiaceae herbal extracts. Plant Foods for Human Nutrition, 62(4), 151–155. https://doi.org/10.1007/s11130-007-0056-6

Ma, C., Kully, M., Khan, J. K., Hattori, M. & Daneshtalab, M. (2007). Synthesis of chlorogenic acid derivatives with promising antifungal activity. Bioorganic & Medicinal Chemistry, 15(21), 6830–6833. https://doi.org/10.1016/j.bmc.2007.07.038

Ma, J. & Ma, C. (2015). Antifungal inhibitory activities of caffeic and quinic acid derivatives. In Preedy, V. Coffee in Health and Disease Prevention. (pp. 635-641). Ed. Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00071-1

Marcillo-Parra, V., Anaguano, M., Molina, M., Tupuna-Yerovi, D. S., & Ruales, J. (2021). Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NSF Journal, 23, 1–7. https://doi.org/10.1016/j.nfs.2021.02.001

Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M. & de la Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology, 140, 30–35. https://doi.org/10.1016/j.pestbp.2017.05.012

Montes-de-Oca-Márquez, C., Hernández-Delgado, C. T., Orozco-Martínez, J., García-Bores, A. M., Ávila-Acevedo, J. G., Ortiz-Melo, M. T., Peñalosa-Castro, I., López-Moreno, G. & Serrano-Parrales, R. (2017). Actividad antibacteriana y antifúngica de Dalea carthagenensis (JACQ.) Revista Fitotecnia Mexicana, 40(2), 161–168. https://doi.org/10.35196/rfm.2017.2.161-168

Mueed, A., Shibli, S., Al-Quwaie, D. A., Ashkan, M. F., Alharbi, M., Alanazi, H., Binothman, N., Aljadani, M., Majrashi, K. A., Huwaikem, M., Abourehab, M. A. S., Korma, S. A. & El-Saadony, M. T. (2023). Extraction, characterization of polyphenols from certain medicinal plants and evaluation of their antioxidant, antitumor, antidiabetic, antimicrobial properties, and potential use in human nutrition. Frontiers in Nutrition, 10, 1125106. https://doi.org/10.3389/fnut.2023.1125106

Possamai-Rossatto, F. C., Tharmalingam, N., Escobar, I. E., Zimmer, K.R., d¨ Azevedo P. A. & Mylonakis, E. (2021). Antifungal activity of the phenolic compounds ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) against drug-resistant Candida auris. Journal of Fungi, 7, 763. https://doi.org/10.3390/jof7090763

Rajurkar, N. & Hande, S.M. (2011). Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 73(2), 146. https://doi.org/10.4103/0250-474X.91574

Sakakibara, H., Honda, Y., Nakagawa, S., Ashida, H. & Kanazawa, K. (2003). Simultaneous determination of all polyphenols in vegetables, fruits, and teas. Journal of Agricultural and Food Chemistry (ACS Publications). Journal of Agricultural and Food Chemistry, 51(3), 571–581. http://pubs.acs.org/doi/abs/10.1021/jf020926l

Shahidi, F. & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047

Torgbo, S., Sukatta, U., Kamonpatana, P. & Sukyai, P. (2022). Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chemistry, 382, 132332. https://doi.org/10.1016/j.foodchem.2022.132332

Vázquez-González, Y., Ragazzo-Sánchez, J. A. & Calderón-Santoyo, M. (2020). Characterization and antifungal activity of jackfruit (Artocarpus heterophyllus Lam.) leaf extract obtained using conventional and emerging technologies. Food Chemistry, 330, 127211. https://doi.org/10.1016/j.foodchem.2020.127211

Vilchis-Gómez, D. S., Calderón-Santoyo, M., Barros-Castillo, J. C., Zamora-Gasga, V. M. & Ragazzo-Sánchez, J. A. (2024). Ultrasound assisted extraction of polyphenols from Randia monantha: Optimization, characterization, and antifungal activity. Industrial Crops and Products, 209, 117932. https://doi.org/10.1016/j.indcrop.2023.117932

Yang, Q., Qian, X., Dhanasekaran, S., Boateng, N. A. S., Yan, X., Zhu, H., He, F. & Zhang, H. (2019). Study on the infection mechanism of Penicillium digitatum on postharvest citrus (Citrus reticulata blanco) based on transcriptomics. Microorganisms, 7(12), 1–13. https://doi.org/10.3390/microorganisms7120672

Yousaf, M., Shoaib, A., Fatima, Q., Bukhari, S., Ali, N. & Fatima, U. (2023). In Vitro antifungal potential of vanillic acid against Sclerotium rolfsii. Journal of Bioresource Management 10(2), 01-08.

Zohra, S. F., Meriem, B. & Samira, S. (2013). Some extracts of mallow plant and its role in health. APCBEE Procedia, 5, 546–550. https://doi.org/10.1016/j.apcbee.2013.05.091

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.