Abstract
Tortilla consumption has disseminated throughout the world. Blue maize has gained popularity among people due to its higher protein content and distinctive color provided by anthocyanins. The transformation of maize into tortillas reduces nutritional compounds and polyphenols. The objective of this research was to elaborate a functional tortilla based on blue maize and lentils (TF), which will increase protein and polyphenols with respect to traditional tortilla (TC). The TF was made with a 70:30 ratio (nixtamalized blue maize flour: lentil flour). The obtained tortillas, TF and (TC), were evaluated for proximate chemical composition, color, anthocyanins, polyphenols, and total antioxidant activity. TF increased 48% and 7%, protein and ash; the color was lighter, confirmed with increases in L* (67.8 and 59.7) and decreases in ΔE (29.08 and 38.74) (p ≤ 0.05). Likewise, the total polyphenols and antioxidant activity were higher (p ≤ 0.05) in TF (168.1 mg EAG/100 g, bs and 6,223.7 µmol ET/100 g bs), with increases of 21.4 and 82%, with respect to TC. TF will serve as a vehicle to introduce a greater supply of proteins and bioactive compounds with antioxidant properties.
References
in blue aleurone and purple pericarp wheats. Cereal Chemistry, 76(3), 350-354. http://doi.org/10.1094/CCHEM.1999.76.3.350
Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. http://doi.org/10.1021/jf0205099
Aguayo-Rojas, J., Mora-Rochin, S., Cuevas-Rodríguez, E. O., Serna-Saldívar, S. O., Gutiérrez-Uribe, J. A., Reyes Moreno, C., & Milán-Carrillo, J. (2012). Phytochemicals and antioxidant capacity of tortillas obtained after lime-cooking extrusion process of whole pigmented Mexican maize. Plant Foods for Human Nutrition, 67(2), 178-185. http://doi:10.1007/s11130-012-0288-y
Argüello-García, E., Martínez-Herrera, J., Córdova-Téllez, L., Sánchez-Sánchez, O., & Corona-Torres, T. (2017). Textural, chemical and sensorial properties of maize tortillas fortified with nontoxic Jatropha curcas L. flour. CYTA-Journal of Food, 15(2), 301-306. http://dx.doi.org/10.1080/19476337.2016.1255915
Association of Official Analytical Chemist (AOAC). (2005). Official methods of analysis of AOAC International. 18th ed. Washington: AOAC.
Aslani, Z., Alipour, B., Mirmiran, P., & Bahadoran, Z. (2015). Lentil´s (Lens culinaris L.) functional properties in prevention and treatment of non-communicable chronic diseases. International Journal of Nutrition and Food Sciences, 4(2), 15-20. https://doi.org/10.11648/j.ijnfs.s.2015040201.14
Astorga-Gaxiola, A. H., Reyes-Moreno, C., Milán-Carrillo, J., Jiménez-Edeza, M., Cuevas-Rodríguez, E. O., Castañeda-Ruelas, G. M., & Mora-Rochin, S. (2023). Release of. Phenolic compounds with antioxidant activity by human colonic microbiota after in vitro fermentation of traditional white and blue maize. International Food Research Journal, 30(1), 240-254. https://doi.org/10.47836/ifrj.30.1.20
Bon-Padilla, B. K., Reyes-Moreno, C., Milán-Carrillo, J., Reynoso-Camacho, R., Gómez-Aldapa, C. A., Gómez-Favela, M. A., & Gutiérrez-Dorado, R. (2022). Cereals & Grains Association, 99, 1154-1165. https://doi:10.1002/cche.10577
Brummer, Y., Kaviani, M., & Tosh, S. M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117-125. https://doi.org/10.1016/j.foodres.2014.11.009
Cetin-Babaoğlu, H., Yalim, N., Kale, E., & Tontul, S. A. (2021). Pigmented whole maize grains for functional value added and low glycemic index snack production. Food Bioscience, 44, 101349. https://doi.org/10.1016/j.fbio.2021.101349
Chuck-Hernández, C. E., & Serna-Saldívar, S. O. (2019). Flours and bread and their fortification in health and disease prevention. In Preedy, V. R., Watson, R. R. Soybean-fortified nixtamalized corn tortillas and related products. (pp 319-3335). Ed. Academic Press.
Colín-Chávez, C., Virgen-Ortiz, J. J., Serrano-Rubio, L. E., Martínez-Téllez, M. A., & Astier, M. (2020). Comparison of nutritional properties and bioactive compounds between industrial and artisan fresh tortillas from maize landraces. Current Research in Food Science, 3(1), 189-194. https://doi.org/10.1016/j.crfs.2020.05.004
Cortes-Soriano, I., Buendía-González, M. O., Palacios-Rojas, N., Martínez-Cruz, E., Villaseñor-Mir, H. E., & Santa-Rosa, R. H. (2022). Quality assessment corn tortilla added with oatmeal (Avena sativa L.) nixtamalized. Revista Mexicana de Ciencias Agrícolas, 7(7), 1715-1725.
Domínguez-Hernández, E., Gaytán-Martínez, M., Gutiérrez-Uribe, J. A., & Domínguez-Hernández, M. E. (2022). The nutraceutical value of maize (Zea mays L.) landraces and the determinants of its variability. Journal of Cereal Science, 103, 103399. http://doi.org/10.1016/j.jcs.2021.103399
Erdogan, C. (2015). Genetic characterization and cotyledon color in lentil. Chilean Journal of Agricultural Research, 75(4), 383-389. http://doi.org/10.4067/S0718-58392015000500001
Gámez-Váldez, L. C., Gutiérrez-Dorado, R., Gómez-Aldapa, C., Perales-Sánchez, J. X. K., Milán-Carrillo, J., Cuevas-Rodríguez, E. O., Mora-Rochín, S., & Reyes-Moreno, C. (2021). Effect of the extruded amaranth flour addition on the nutritional, nutraceutical and sensory quality of tortillas produced from extruded creole blue maize flour. Biotecnia, 23(2), 103-112. https://doi.org/10.18633/biotecnia.v23i2.1385
Gaxiola-Cuevas, N., Mora-Rochin, S., Cuevas-Rodríguez, E. O., León-López, L., Reyes-Moreno, C., Montoya-Rodríguez, A., & Milán-Carrillo, J. (2017). Phenolic acids profiles and cellular antioxidant activity in tortillas produced from Mexican maize landrace processed by nixtamalization and lime extrusion cooking. Plant Food for Human Nutrition, 72, 314-320. https://doi.org/10.1007/s11130-017-0624-3
Gasinski, A., & Kawa-Rygielska, J. (2022). Mashing quality and nutritional content of lentil and bean malts. LWT – Food Science and Technology, 169, 113927. https://doi.org/10.1016/j.lwt.2022.113927
Gutiérrez-Llanos, M., Alemán de la Torre, I., Salinas-Moreno, Y., Santillán-Fernández, A., Ramírez-Díaz, J. L., & Ledesma-Miramontes, A. (2023). Color and nutraceutical characteristics of native maize (Zea mays L.) tortillas prepared with different doses of alkali and refrigerated. Revista Fitotecnia Mexicana, 46(2), 115-126. https://doi.org/10.35196/rfm.2023.2.115
Halima, O., Najar, F. Z., Wahab, A., Gamadera, S., Chowdhury, A. I., Foster, S. B., Shaheen, N., & Ahsan, N. (2022). Lentil allergens identification and quantification: an update from omics perspective. Food Chemistry: Molecular Sciences, 4, 100109. https://doi.org/10.1016/j.fochms.2022.100109
Herrera-Sotero, M. Y., Cruz-Hernández, C. D., Trujillo-Carretero, C., Rodríguez-Dorantes, M., García-Galindo, H. S., Chávez-Servia, J. L., Oliart-Ros, R. M., & Guzmán-Gerónimo, R. I. (2017). Antioxidant and antiproliferative activity of blue corn tortilla from native maize. BMC Chemistry, 11, 110. https://doi.org/10.1186/s13065-017-0341-x
Hidalgo-Ramos, D. M., Rodríguez-Herrera, S. A., Palacios-Rojas, N., López-Benítez, A., García-Osuna, H. T., Lozano del Río, A. J., & Mancera-Rico, A. (2024). Antocyanin content and physical characteristics of kernels from 300 pigmented maize accessions. Revista Bio Ciencias, 11, e1578. https://doi.org/10.15741/revbio.11.e1578
Inyang, U. E., Akindolu, B. E., & Elijah, A. I. (2019). Nutrient composition, amino acid profile, and antinutritional factors of nixtamalized maize flour supplemented with sprouted soybean flour. European Journal of Nutrition and Food Safety, 9, 41-51. http://doi.org/10.9734/EJNFS/2019/46150
Joshi, M., Timilsena, Y., & Adhikari, B. (2017). Global production, processing and utilization of lentil: A review. Journal of Integrative Agriculture, 16(12), 2898-2913. http://doi.org/10.1016/S2095-3119(17)61793-3
León-López, L., Reyes-Moreno, C., Ley-Osuna, A. H., Perales-Sánchez, J. X. K., Milán-Carrillo, J., Cuevas-Rodríguez, E. O., Gutiérrez-Dorado, R. (2019). Improvement of nutritional and nutraceutical value of nixtamalized maize tortillas by addition of extruded chia flour. Biotecnia, 21(3), 56-66. https://doi.org/10.18633/biotecnia.v21i3.1012
León-Murillo, J. R., Gutiérrez-Dorado, R., Reynoso-Camacho, R., Milán-Carrillo, J., Perales-Sánchez, J. X. K., Cuevas-Rodríguez, E. O., & Reyes-Moreno, C. (2021). Tortillas made with extruded flours of blue maize and chía seeds as an nutritious and nutraceutical food option. Agrociencia, 55, 487-506. https://doi.org/10.47163/agrociencia.v55i6.2555
Manco, A., Gerardi, C., Romano, G., D´Amico, L., Blanco, A., Milano, F., Di Sansebastiano, G. P., Balech, R., & Laddomada, B. (2023). Phenolic profile of whole sedes and seed fractions of lentils and its impact on antioxidant activity. Food Bioscience, 54, 102887. https://doi.org/10.1016/j.fbio.2023.102887
Mora-Rochin, S., Gaxiola-Cuevas, N., Gutiérrez-Uribe, J. A., Milán-Carrillo, J., Milán-Noris, E. M., Reyes-Moreno, C., Serna-Saldívar, S. O., & Cuevas-Rodríguez, E. O. (2016). Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea mays L.) landraces. LWT-Food Science and Technology, 68, 563-569. http://doi.org/10.1016/j.lwt.2016.01.009
Mora-Rochin, S., Gutiérrez-Uribe, J. A., Serna-Saldivar, S. O., Sánchez-Peña, P., Reyes-Moreno, C., & Milán-Carrillo, J. (2010). Phenolic content and antioxidant activity of tortillas produced from pigmented maize processed by conventional nixtamalization or extrusion cooking. Journal of Cereal Science, 52(3), 502-508. https://doi.org/10.1016/j.jcs.2010.08.010
Mora-Rochin, S., Milán-Noris, A. K., & Milán-Carrillo, J. (2019). Maize. In Mir, S. A., Manickavasagan, A., & Shah, M. A. Whole grains, processing, product development, and nutritional aspects. (pp. 87-102). Ed. CRC Press.
Olšaníková, K., Šárka, E., & Smrčková, P. (2022). Extrusion process of maize grifts used for nixtamalization. Czech Journal of Food Sciences, 40(2), 138-146. https://doi.org/10.17221/188/2021-CJFS
Pathiraja, E., Wanasundara, J. P. D., Elessawy, F. M., Purves, R. W., Vandenberg, A., & Shand, P. J. (2023). Water-soluble phenolic compounds and their putative antioxidant activities in the seed coats from different lentil (Lens culinaris) genotypes. Food Chemistry, 407, 135145. https://doi.org/10.1016/j.foodchem.2022.135145
Ramírez-Jiménez, A. K., Cota-López, R., Morales-Sánchez, E., Gaytán-Martínez, M., Martínez-Flores, E. E., Reyes-Vega, M. L., & Figueroa-Cárdenas, J. D. (2023). Sustainable process for tortilla production using ohmic heating with minimal impact on the nutritional value, protein, and calcium performance. Foods, 12, 3327. https://doi.org/10.3390/foods12183327
Rodiles-López, J. O., Arriaga-Martínez, L. P., Martínez-Flores, H. E., Zamora-Vega, R., & García-Martínez, R. M. (2019). Development of an added tortilla with avocado and nopal flours and its effect on the reduction of cholesterol, triglycerides and glucose in rats. Biotecnia, 21(2), 71-77. https://doi.org/10.18633/biotecnia.v21i2.909
Salinas-Moreno, Y., Castillo-Linares, E. B., Vázquez-Carrillo, M. G., & Buendía-González, M. O. (2011). Blends of waxy with normal maize and their effect on tortilla quality. Revista Mexicana de Ciencias Agrícolas, 2(5), 689-702. https://www.redalyc.org/pdf/2631/263121118005.pdf
Salinas-Moreno, Y., García-Salinas, C., Coutiño-Estrada, B., & Vidal-Martínez, V. A. (2013). Variabilidad en contenido y tipos de antocianinas en granos de color azul/morado de poblaciones mexicanas de maíz. Revista Fitotecnia Mexicana, 36, 285-294. https://doi.org/10.35196/rfm.2013.3-s3-a.285
Salinas-Moreno, Y., Gálvan-Mariscal, A., Severiano-Pérez, P., Vázquez-Carrillo, G., & Trejo-Téllez, L. L. (2024). Flavor and taste attributes and nutritional insights of maize tortillas from landraces of mexican races. Heliyon, 10, e28314. https://doi.org/10.1016/j.heliyon.2024.e28314
Samaranayaka, A., & Khazaei, H. (2024). Lentil: revival of poor man´s meat. In Nadathur, S., Wanasundara, J. P., & Scanlin, L. (Eds) Sustainable protein sources (pp. 201-2017). Academic Press. https://doi.org/10.1016/B978-0-12-802778-3.00011-1
Shrestha, S., van ´t Hag, L., Haritos, V. S., & Dhital, S. (2023). Lentil and Mungbean protein isolates: processing, functional properties, and potential food applications. Food Hydrocolloids, 135, 108142. https://doi.org/10.1016/j.foodhyd.2022.108142
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. http://doi.org/10.1016/S0076-6879(99)99017-1
Treviño-Mejía, D., Luna-Vital, D. A., Gaytán-Martínez, M., Mendoza, S., & Loarca-Piña, G. (2016). Fortification of commercial nixtamalized maize (Zea mays L.) with common bean (Phaseolus vulgaris L.) increased the nutritional and nutraceutical content of tortillas without modifying sensory properties. Journal of Food Quality, 39, 569-579. https://doi:10.1111/jfq.12251
Tsoupras, A., Moran, D., Shiels, K., Saha, S. K., Abu-Reidah, I. M., Thomas, R. H., & Redfern, S. (2024). Enrichment of whole-grain breads with food-grade extracted apple pomace bioactives enhanced their anti-inflamatory, antithrombotic and anti-oxidant functional properties. Antioxidants, 13, 225-253. http://doi.org/10.3390/antiox13020225
Urbano, G., Porres, J. M., Frias, J., & Vidal-Valverde, C. (2007). Nutritional value. In Yadav, S. S., McNeil, D. L., & Stevenson, P.C. Lentil: An ancient Crop for Modern Times. (47-93). Ed. Springer.
Yeo, J., & Shahidi, F. (2017). Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. Journal of Functional Foods, 38, 716-722. https://doi.org/10.1016/j.jff.2016.12.010

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.