Abstract
Long non-coding RNAs are molecules involved in multiple cellular processes and are notable for their functions in various types of cancer. Some of their mechanisms of action include regulating transcription and translation, as well as the activity on functional proteins. This review examines current biomarkers and the potential of the most relevant long non-coding RNAs in cervical cancer, including their diagnostic and therapeutic applications, to promote their incorporation into clinical practice. Long non-coding RNAs show high expression in bodily fluids and cervical tissue of patients with this neoplasm, making them promising biomarkers for early detection, prognosis, and tumor monitoring. Specifically, the long non-coding RNAs PICART1, STARD7-AS1, and PTENP1 are associated with a favorable prognosis by inhibiting tumor growth. In contrast, HOTAIR, MALAT1, and ZFAS1 are involved in cellular processes such as proliferation, migration, and tumor invasion, which are associated with unfavorable prognoses. The high specificity of non-coding RNAs for diagnosis, as well as their potential for targeted and personalized therapies, could revolutionize oncological medicine, enabling more effective treatments with lower toxicity for patients with this type of cancer.
References
Agurto, I., Bishop, A., Sanchez, G., Betancourt, Z., & Robles, S. (2004). Perceived barriers and benefits to cervical cancer screening in Latin America. Preventive Medicine, 39(1), 91–98. https://doi.org/10.1016/j.ypmed.2004.03.040
Al Mamun, A., Tanvir, R. B., Sobhan, M., Mathee, K., Narasimhan, G., Holt, G. E., & Mondal, A. M. (2021). Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers. International journal of molecular sciences, 22(21), 11919. https://doi.org/10.3390/ijms222111919
Álvarez-Aldana, A., Sepúlveda Arias, J. C., & Siller López, F. (2012). Carcinogénesis inducida por el virus del papiloma humano. Investigaciones Andina, 14(24), 438–456. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-81462012000100007&lng=en&tlng=es.
Arun, G., Aggarwal, D., & Spector, D. L. (2020). MALAT1 long non-coding RNA: functional implications. Non-Coding RNA, 6(2), 22. https://doi.org/10.3390/ncrna6020022
Aswathy, R., & Sumathi, S. (2023). Defining new biomarkers for overcoming therapeutical resistance in cervical cancer using lncRNA. Molecular Biology Reports, 50(12), 10445-10460. https://doi.org/10.1007/s11033-023-08864-w
Baay, M. F. D., Tjalma, W. A. A., Weyler, J., Pattyn, G. G. O., Lambrechts, H. A. J., Goovaerts, G., Baekelandt, M., Buytaert, P., Van Marck, E. A. E., & Lardon, F. (2001). Prevalence of human papillomavirus in elderly women with cervical cancer. Gynecologic and Obstetric Investigation, 52(4), 248–251. https://doi.org/10.1159/000052984
Berezikov, E., Chung, W. J., Willis, J., Cuppen, E., & Lai, E. C. (2007). Mammalian mirtron genes. Molecular cell, 28(2), 328-336. https://doi.org/10.1016/j.molcel.2007.09.028
Beylerli, O., Gareev, I., Sufianov, A., Ilyasova, T., & Guang, Y. (2022). Long noncoding RNAs as promising biomarkers in cancer. Non-Coding RNA Research, 7(2), 66–70. https://doi.org/10.1016/j.ncrna.2022.02.004
Bhatla, N., Berek, J. S., Cuello Fredes, M., Denny, L. A., Grenman, S., Karunaratne, K., Kehoe, S. T., Konishi, I., Olawaiye, A. B., & Prat, J. (2019). Revised FIGO staging for carcinoma of the cervix uteri. International Journal of Gynecology & Obstetrics, 145(1), 129–135. https://doi.org/10.1002/ijgo.12749
Bhatla, N., Aoki, D., Sharma, D. N., & Sankaranarayanan, R. (2021). Cancer of the cervix uteri: 2021 update. International Journal of Gynecology & Obstetrics, 155, 28–44. https://doi.org/10.1002/ijgo.13865
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229–263. https://doi.org/10.3322/caac.21834
Bukowska-Durawa, A., & Luszczynska, A. (2014). Cervical cancer screening and psychosocial barriers perceived by patients. A systematic review. Contemporary Oncology/Współczesna Onkologia, 18(3), 153–159. https://doi.org/10.5114/wo.2014.43158
Buranjiang, G., Abuduwanke, A., Li, X., & Abulizi, G. (2023). LncRNA HOTAIR enhances RCC2 to accelerate cervical cancer progression by sponging miR-331-3p. Clinical and Translational Oncology, 25(6), 1650–1660. https://doi.org/10.1007/s12094-022-03059-4
Cai, L., Li, Y., Tan, J., Xu, L., & Li, Y. (2023). Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. Journal of Hematology & Oncology, 16(1), 101. https://doi.org/10.1186/s13045-023-01499-1
Carlevaro-Fita, J., Lanzós, A., Feuerbach, L., Hong, C., Mas-Ponte, D., Pedersen, J. S., & Johnson, R. (2020). Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Communications Biology, 3(1), 56. https://doi.org/10.1038/s42003-019-0741-7
Chen, F. Y., Zhou, Z. Y., Zhang, K. J., Pang, J., & Wang, S. M. (2020). Long non-coding RNA MIR100HG promotes the migration, invasion and proliferation of triple-negative breast cancer cells by targeting the miR-5590-3p/OTX1 axis. Cancer cell international, 20(1), 508. https://doi.org/10.1038/s41419-019-2096-5
Chi, C., Hou, W., Zhang, Y., Chen, J., Shen, Z., Chen, Y., & Li, M. (2023). PDHB-AS suppresses cervical cancer progression and cisplatin resistance via inhibition on Wnt/β-catenin pathway. Cell Death & Disease, 14(2), 90. https://doi.org/10.1038/s41419-022-05547-5
Chi, S., Shen, L., Hua, T., Liu, S., Zhuang, G., Wang, X., Zhou, X., Wang, G., & Wang, H. (2017). Prognostic and diagnostic significance of lncRNAs expression in cervical cancer: a systematic review and meta-analysis. Oncotarget, 8(45), 79061. https://doi.org/10.18632/oncotarget.18323
Chodurska, B., & Kunej, T. (2025). Long non-coding RNAs in humans: classification, genomic organization and function. Non-coding RNA research. 11(2), 313-325. https://doi.org/10.1016/j.ncrna.2025.01.004
Christofyllakis, K., Bittenbring, J. T., Thurner, L., Ahlgrimm, M., Stilgenbauer, S., Bewarder, M., & Kaddu-Mulindwa, D. (2022). Cost-effectiveness of precision cancer medicine-current challenges in the use of next generation sequencing for comprehensive tumour genomic profiling and the role of clinical utility frameworks. Molecular and Clinical Oncology, 16(1), 21. https://doi.org/10.3892/mco.2021.2453
Coan, M., Haefliger, S., Ounzain, S., & Johnson, R. (2024). Targeting and engineering long non-coding RNAs for cancer therapy. Nature Reviews Genetics, 25(8), 578–595. https://doi.org/10.1038/s41576-024-00693-2
Dai, S.-G., Guo, L.-L., Xia, X., & Pan, Y. (2019). Long non-coding RNA WT1-AS inhibits cell aggressiveness via miR-203a-5p/FOXN2 axis and is associated with prognosis in cervical cancer. European Review for Medical & Pharmacological Sciences, 23(2), 486–495. https://doi.org/10.26355/eurrev_201901_16860
del Campo, N. M. S., & Matamoros, L. Z. (2021). Análisis estadístico implicativo en la identificación de factores pronósticos de mortalidad por cáncer cervicouterino. Acta Médica Del Centro, 15(2), 188–203. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2709-79272021000200188&lng=es&tlng=es.
Donehower, L. A., Soussi, T., Korkut, A., Liu, Y., Schultz, A., Cardenas, M., Li, X., Babur, O., Hsu, T.-K., & Lichtarge, O. (2019). Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Reports, 28(5), 1370–1384. https://doi.org/10.1016/j.celrep.2019.07.001
Duan, H. X., Li, B. W., Zhuang, X., Wang, L. T., Cao, Q., Tan, L. H., Qu, G. F., & Xiao, S. (2019). TCF21 inhibits tumor-associated angiogenesis and suppresses the growth of cholangiocarcinoma by targeting PI3K/Akt and ERK signaling. American journal of physiology. Gastrointestinal and liver physiology, 316(6), G763–G773. https://doi.org/10.1152/ajpgi.00264.2018
Esposito, R., Polidori, T., Meise, D. F., Pulido-Quetglas, C., Chouvardas, P., Forster, S., Schaerer, P., Kobel, A., Schlatter, J., & Kerkhof, E. (2022). Multi-hallmark long noncoding RNA maps reveal non-small cell lung cancer vulnerabilities. Cell Genomics, 2(9). https://doi.org/10.1016/j.xgen.2022.100171
Fan, Y., Sheng, W., Meng, Y., Cao, Y., & Li, R. (2020). LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 393–407. https://doi.org/10.1080/21691401.2019.1709852
Fani, M., Mahmoodi, P., Emadzadeh, M., Avan, A., Karimi, E., Ferns, G. A., Rezayi, M., & Amiri, I. S. (2020). Correlation of human papillomavirus 16 and 18 with cervical cancer and their diagnosis methods in Iranian women: A systematic review and meta-analysis. Current Problems in Cancer, 44(1), 100493. https://doi.org/10.1016/j.currproblcancer.2019.06.008
FDA-NIH Biomarker Working Group. (2020). BEST (Biomarkers, EndpointS, and other Tools) Silver Spring (MD): Food and Drug Administration (US). Contents of a Biomarker Description. https://www.ncbi.nlm.nih.gov/books/NBK566059/
Feng, L.-L., Shen, F.-R., Zhou, J.-H., & Chen, Y.-G. (2019). Expression of the lncRNA ZFAS1 in cervical cancer and its correlation with prognosis and chemosensitivity. Gene, 696, 105–112. https://doi.org/10.1016/j.gene.2019.01.025
Feng, H., Li, B., Li, Z., Wei, Q., & Ren, L. (2021). PIVKA-II serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer, 21, 1–10. https://doi.org/10.1186/s12885-021-08138-3
Floudas, C. S., Goswami, M., Donahue, R. N., Strauss, J., Pastor, D. M., Redman, J. M., Brownell, I., Turkbey, E. B., Steinberg, S. M., Cordes, L. M., Marté, J. L., Khan, M. H., McMahon, S., Lamping, E., Manu, M., Manukyan, M., Brough, D. E., Lankford, A., Jochems, C., Schlom, J., … Gulley, J. L. (2025). PRGN-2009 and bintrafusp alfa for patients with advanced or metastatic human papillomavirus-associated cancer. Cancer immunology, immunotherapy : CII, 74(5), 155. https://doi.org/10.1007/s00262-025-04009-z
Fuzzell, L. N., Perkins, R. B., Christy, S. M., Lake, P. W., & Vadaparampil, S. T. (2021). Cervical cancer screening in the United States: Challenges and potential solutions for underscreened groups. Preventive Medicine, 144, 106400. https://doi.org/https://doi.org/10.1016/j.ypmed.2020.106400
Gao, Y.-L., Zhao, Z.-S., Zhang, M.-Y., Han, L.-J., Dong, Y.-J., & Xu, B. (2017). Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncology Research, 25(8), 1391. https://doi.org/10.3727/096504017X14881559833562
Gao, N., Li, Y., Li, J., Gao, Z., Yang, Z., Li, Y., Liu, H., & Fan, T. (2020). Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Frontiers in Oncology, 10, 598817. https://doi.org/10.3389/fonc.2020.598817
Gao, M., & Shang, X. (2023). Identification of associations between lncRNA and drug resistance based on deep learning and attention mechanism. Frontiers in microbiology, 14, 1147778. https://doi.org/10.3389/fmicb.2023.1147778
Gareev, I., Gileva, Y., Dzidzaria, A., Beylerli, O., Pavlov, V., Agaverdiev, M., Mazorov, B., Biganyakov, I., Vardikyan, A., Jin, M., & Ahmad, A. (2021). Long non-coding RNAs in oncourology. Non-coding RNA research, 6(3), 139–145. https://doi.org/10.1016/j.ncrna.2021.08.001
Gibb, E. A., Becker-Santos, D. D., Enfield, K. S. S., Guillaud, M., van Niekerk, D., Matisic, J. P., MacAulay, C. E., & Lam, W. L. (2012). Aberrant expression of long noncoding RNAs in cervical intraepithelial neoplasia. International Journal of Gynecologic Cancer, 22(9). https://doi.org/10.1097/IGC.0b013e318272f2c9
Hall, M. T., Simms, K. T., Lew, J.-B., Smith, M. A., Saville, M., & Canfell, K. (2018). Projected future impact of HPV vaccination and primary HPV screening on cervical cancer rates from 2017–2035: example from Australia. PloS One, 13(2), e0185332. https://doi.org/10.1371/journal.pone.0185332
He, J., Huang, B., Zhang, K., Liu, M., & Xu, T. (2020). Long non-coding RNA in cervical cancer: From biology to therapeutic opportunity. Biomedicine & Pharmacotherapy, 127, 110209. https://doi.org/10.1016/j.biopha.2020.110209
Hu, Y., Li, G., Ma, Y., Luo, G., Wang, Q., & Zhang, S. (2023). Effect of Exosomal lncRNA MALAT1/miR‐370‐3p/STAT3 Positive Feedback Loop on PI3K/Akt Pathway Mediating Cisplatin Resistance in Cervical Cancer Cells. Journal of Oncology, 2023(1), 6341011. https://doi.org/10.1155/2023/6341011
Huang, H., Du, J., Jin, B., Pang, L., Duan, N., Huang, C., Hou, J., Yu, W., Hao, H., & Li, H. (2021). Combination of urine exosomal mRNAs and lncRNAs as novel diagnostic biomarkers for bladder cancer. Frontiers in Oncology, 11, 667212. https://doi.org/10.3389/fonc.2021.667212
Huang, S., Zheng, G., & Yang, K. (2023). Neoadjuvant PD-1/PD-L1 combined with CTLA-4 inhibitors for solid malignancies: a systematic review and meta-analysis. World Journal of Surgical Oncology, 21(1), 349. https://doi.org/10.1186/s12957-023-03212-5
INEGI. (2025). Estadísticas a propósito del Día Mundial contra el Cáncer. https://www.inegi.org.mx/app/saladeprensa/noticia/9661
Instituto Mexicano del Seguro Social. (2011). Prevención y detección oportuna del cáncer cérvico uterino en el primer nivel de atención. Mexico: Instituto Mexicano del Seguro Social, 2010. IMSS. 17–20. https://www.imss.gob.mx/sites/all/statics/guiasclinicas/146GER.pdf
Ji, Y. Y., Meng, M., & Miao, Y. (2020). lncRNA SNHG1 promotes progression of cervical cancer through miR-195/NEK2 axis. Cancer Management and Research, 11423–11433. https://doi.org/10.2147/CMAR.S277064
Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., & Wyczalkowski, M. A. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502(7471), 333–339. https://doi.org/10.1038/nature12634
Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermüller, J., & Hofacker, I. L. (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830), 1484–1488. https://doi.org/10.1126/science.1138341
Kawamura, H., Honda, M., Takano, Y., Kinuta, S., Kamiga, T., Saji, S., & Kono, K. (2022). Prognostic role of carcinoembryonic antigen and carbohydrate antigen 19-9 in stage IV colorectal cancer. Anticancer Research, 42(8), 3921–3928. https://doi.org/10.21873/anticanres.15886
Landegren, U., & Hammond, M. (2021). Cancer diagnostics based on plasma protein biomarkers: hard times but great expectations. Molecular Oncology, 15(6), 1715–1726. https://doi.org/10.1002/1878-0261.12809
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., ... & Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419. https://doi.org/10.1038/nature01957
Lee, J.-E., Chung, Y., Rhee, S., & Kim, T.-H. (2022). Untold story of human cervical cancers: HPV-negative cervical cancer. BMB Reports, 55(9), 429. https://doi.org/10.5483/BMBRep.2022.55.9.042
Li, N., Meng, D., Gao, L., Xu, Y., Liu, P., Tian, Y., Yi, Z., Zhang, Y., Tie, X., & Xu, Z. (2018). Overexpression of HOTAIR leads to radioresistance of human cervical cancer via promoting HIF-1α expression. Radiation Oncology, 13, 1–9. https://doi.org/10.1186/s13014-018-1153-4
Li, P., Wang, J., Zhi, L., & Cai, F. (2021). Linc00887 suppresses tumorigenesis of cervical cancer through regulating the miR-454-3p/FRMD6-Hippo axis. Cancer Cell International, 21, 1–14. https://doi.org/10.1186/s12935-020-01730-w
Liu, M., Jia, J., Wang, X., Liu, Y., Wang, C., & Fan, R. (2018). Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biology & Therapy, 19(5), 391–399. https://doi.org/10.1080/15384047.2018.1423921
Liu, C., Deng, S., Jin, K., Gong, Y., Cheng, H., Fan, Z., Qian, Y., Huang, Q., Ni, Q., & Luo, G. (2020). Lewis antigen‑negative pancreatic cancer: An aggressive subgroup. International Journal of Oncology, 56(4), 900–908. https://doi.org/10.3892/ijo.2020.4989
Liu, J., Su, S., & Liu, Y. (2022). The value of Ki67 for the diagnosis of LSIL and the problems of p16 in the diagnosis of HSIL. Scientific reports, 12(1), 7613. https://doi.org/10.1038/s41598-022-11584-z
Liu, M.-Y., & Li, N. (2023). The diagnostic value of lncRNA HOTAIR for cervical carcinoma in vaginal discharge and serum. Medicine, 102(26), e34042. https://doi.org/10.1097/MD.0000000000034042
Lizano, M., Carrillo-García, A., De La Cruz-Hernández, E., Castro-Muñoz, L. J., & Contreras-Paredes, A. (2024). Promising predictive molecular biomarkers for cervical cancer. International Journal of Molecular Medicine, 53(6), 50. https://doi.org/10.3892/ijmm.2024.5374
Luo, A., Lan, X., Qiu, Q., Zhou, Q., Li, J., Wu, M., Liu, P., Zhang, H., Lu, B., & Lu, Y. (2022). LncRNA SFTA1P promotes cervical cancer progression by interaction with PTBP1 to facilitate TPM4 mRNA degradation. Cell Death & Disease, 13(11), 936. https://doi.org/10.1038/s41419-022-05359-7
Ma, L., Cao, J., Liu, L., Du, Q., Li, Z., Zou, D., Bajic, V. B., & Zhang, Z. (2019). LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Research, 47(D1), D128–D134. https://doi.org/10.1093/nar/gky960
Matouk, I. J., Raveh, E., Abu-Lail, R., Mezan, S., Gilon, M., Gershtain, E., ... & Czerniak, A. (2014). Oncofetal H19 RNA promotes tumor metastasis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(7), 1414-1426. https://doi.org/10.1016/j.bbamcr.2014.03.023
Matouk, I. J., Halle, D., Raveh, E., Gilon, M., Sorin, V., & Hochberg, A. (2016). The role of the oncofetal H19 lncRNA in tumor metastasis: orchestrating the EMT-MET decision. Oncotarget, 7(4), 3748–3765. https://doi.org/10.18632/oncotarget.6387
Mattern, J., Letendre, I., Sibiude, J., Pénager, C., Jnifen, A., Souare, F., Ayel, S., Nguyen, T., & Mandelbrot, L. (2022). Diagnosis of advanced cervical cancer, missed opportunities? BMC Women’s Health, 22(1), 97. https://doi.org/10.1186/s12905-022-01668-3
Mattick, J. S., Amaral, P. P., Carninci, P., Carpenter, S., Chang, H. Y., Chen, L.-L., Chen, R., Dean, C., Dinger, M. E., Fitzgerald, K. A., Gingeras, T. R., Guttman, M., Hirose, T., Huarte, M., Johnson, R., Kanduri, C., Kapranov, P., Lawrence, J. B., Lee, J. T., … Wu, M. (2023). Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology, 24(6), 430–447. https://doi.org/10.1038/s41580-022-00566-8
Maver, P. J., & Poljak, M. (2020). Primary HPV-based cervical cancer screening in Europe: implementation status, challenges, and future plans. Clinical Microbiology and Infection, 26(5), 579–583. https://doi.org/10.1016/j.cmi.2019.09.006
McGraw, S. L., & Ferrante, J. M. (2014). Update on prevention and screening of cervical cancer. World Journal of Clinical Oncology, 5(4), 744. https://doi.org/10.5306/wjco.v5.i4.744
Ming, J., Cheng, F., Fu, Y., Zhang, M., Rou, Q., Liu, K., Nuertai, Z., Xu, S., Tao, L., Abudujapar, A., & Liu, Y. (2025). Long non-coding RNA H19 promotes cervical cancer development via targeting the microRNA-140/ALDH1A1 axis. European journal of medical research, 30(1), 95. https://doi.org/10.1186/s40001-025-02350-8
Mwaliko, E., Van Hal, G., Bastiaens, H., Van Dongen, S., Gichangi, P., Otsyula, B., Naanyu, V., & Temmerman, M. (2021). Early detection of cervical cancer in western Kenya: determinants of healthcare providers performing a gynaecological examination for abnormal vaginal discharge or bleeding. BMC Family Practice, 22, 1–11. https://doi.org/10.1186/s12875-021-01395-y
National Institute of Health. (2022). Cancer Stat Facts: Cervical Cancer. Https://Seer.Cancer.Gov/Statfacts/Html/Cervix.Html
Naz, F., Tariq, I., Ali, S., Somaida, A., Preis, E., & Bakowsky, U. (2021). The role of long non-coding RNAs (lncRNAs) in female oriented cancers. Cancers, 13(23), 6102. https://doi.org/10.3390/cancers13236102
Ni, S., Wei, Z., & Li, D. (2023). Effect of lncRNA LINC00324 on cervical cancer progression through down-regulation of miR-195-5p. Journal of Obstetrics and Gynaecology, 43(2), 2285384. https://doi.org/10.1080/01443615.2023.2285384
Patel, D., Thankachan, S., Sreeram, S., Kavitha, K. P., Kabekkodu, S. P., & Suresh, P. S. (2025). LncRNA-miRNA-mRNA regulatory axes as potential biomarkers in cervical cancer: a comprehensive overview. Molecular Biology Reports, 52(1), 1-15. https://doi.org/10.1007/s11033-024-10215-2
Pavelescu, L. A., Mititelu-Zafiu, N. L., Mindru, D. E., Vladareanu, R., & Curici, A. (2025). Molecular Insights into HPV-Driven Cervical Cancer: Oncoproteins, Immune Evasion, and Epigenetic Modifications. Microorganisms, 13(5), 1000. https://doi.org/10.3390/microorganisms13051000
Peña, A., Orozco-Gómez, C., Amaro Hinojosa, M. D., & Jiménez-Vázquez, V. (2023). Factores que intervienen en la prevención del cáncer cervicouternino en jóvenes, medidas de prevención y rol del personal profesional de enfermería: revisión de literatura. CienciAcierta. https://www.researchgate.net/publication/377590003_Factores_que_intervienen_en_la_prevencion_del_cancer_cervicouternino_en_jovenes_medidas_de_prevencion_y_rol_del_personal_profesional_de_enfermeria_revision_de_literatura
Perenguez, M., Ramírez-Montaño, D., Candelo, E., Echavarria, H., & De La Torre, A. (2024). Genomic Medicine: Perspective of the Challenges for the Implementation of Preventive, Predictive, and Personalized Medicine in Latin America. Current Pharmacogenomics and Personalized Medicine, 21(2), 51-57. https://doi.org/10.2174/0118756921304274240819071740
Rajaram, S., & Gupta, B. (2021). Screening for cervical cancer: Choices & dilemmas. Indian Journal of Medical Research, 154(2), 210–220. https://doi.org/10.4103/ijmr.IJMR_857_20
Rodrik-Outmezguine, V. S., Okaniwa, M., Yao, Z., Novotny, C. J., McWhirter, C., Banaji, A., Won, H., Wong, W., Berger, M., & de Stanchina, E. (2016). Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 534 (7606), 272–276. https://doi.org/10.1038/nature17963
Safaeian, M., & Sherman, M. E. (2013). From papanicolaou to papillomaviruses: evolving challenges in cervical cancer screening in the era of human papillomavirus vaccination. In Journal of the National Cancer Institute. Oxford University Press US. 105(20), 1524–1526. https://doi.org/10.1093/jnci/djt267
Sarhadi, V. K., & Armengol, G. (2022). Molecular biomarkers in cancer. Biomolecules, 12(8), 1021. https://doi.org/10.3390/biom12081021
Schmitz, S. U., Grote, P., & Herrmann, B. G. (2016). Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 73, 2491–2509. https://doi.org/10.1007/s00018-016-2174-5
Serghiou, S., Kyriakopoulou, A., & Ioannidis, J. P. A. (2016). Long noncoding RNAs as novel predictors of survival in human cancer: a systematic review and meta-analysis. Molecular Cancer, 15(1), 50. https://doi.org/10.1186/s12943-016-0535-1
Serrano, B., Brotons, M., Bosch, F. X., & Bruni, L. (2018). Epidemiology and burden of HPV-related disease. Best Practice & Research Clinical Obstetrics & Gynaecology, 47, 14–26. https://doi.org/10.1016/j.bpobgyn.2017.08.006
St. Laurent, G., Wahlestedt, C., & Kapranov, P. (2015). The Landscape of long noncoding RNA classification. Trends in Genetics, 31(5), 239–251. https://doi.org/10.1016/j.tig.2015.03.007
Statello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nature reviews Molecular cell biology, 22(2), 96-118. https://doi.org/10.1038/s41580-020-00315-9
Su, Y., Hou, W., Zhang, C., Ji, P., Hu, R., Zhang, Q., Wang, Y., Li, P., Zhang, H., Chen, Y., Zhang, X., Zhang, M. (2022). Long non-coding RNA ZFAS1 regulates cell proliferation and invasion in cervical cancer via the miR-190a-3p/KLF6 axis. Bioengineered, 13(2), 3840–3851. https://doi.org/10.1080/21655979.2021.2022265
Sun, W., Wang, L., Zhao, D., Wang, P., Li, Y., & Wang, S. (2018). Four circulating long non-coding RNAs act as biomarkers for predicting cervical cancer. Gynecologic and Obstetric Investigation, 83(6), 533–539. https://doi.org/10.1159/000487595
Sweta, S., Dudnakova, T., Sudheer, S., Baker, A. H., & Bhushan, R. (2019). Importance of long non-coding RNAs in the development and disease of skeletal muscle and cardiovascular lineages. Frontiers in Cell and Developmental Biology, 7, 228. https://doi.org/10.3389/fcell.2019.00228
Tornesello, M. L., Faraonio, R., Buonaguro, L., Annunziata, C., Starita, N., Cerasuolo, A., Pezzuto, F., Tornesello, A. L., & Buonaguro, F. M. (2020). The Role of microRNAs, Long Non-coding RNAs, and Circular RNAs in Cervical Cancer. Frontiers in oncology, 10, 150. https://doi.org/10.3389/fonc.2020.00150
Taniguchi, H., Nakamura, Y., Kotani, D., Yukami, H., Mishima, S., Sawada, K., Shirasu, H., Ebi, H., Yamanaka, T., Aleshin, A., Billings, P. R., Rabinowitz, M., Oki, E., Takemasa, I., Kato, T., Mori, M., & Yoshino, T. (2021). CIRCULATE-Japan: Circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer science, 112(7), 2915–2920. https://doi.org/10.1111/cas.14926
Trujano-Camacho, S., Cantú-de León, D., Pérez-Yepez, E., Contreras-Romero, C., Coronel-Hernandez, J., Millan-Catalan, O., Rodríguez-Dorantes, M., López-Camarillo, C., Gutiérrez-Ruiz, C., Jacobo-Herrera, N., & Pérez-Plasencia, C. (2024). HOTAIR Promotes the Hyperactivation of PI3K/Akt and Wnt/β-Catenin Signaling Pathways via PTEN Hypermethylation in Cervical Cancer. Cells, 13(17), 1484. https://doi.org/10.3390/cells13171484
Walboomers, J. M. M., Jacobs, M. V, Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V, Snijders, P. J. F., Peto, J., Meijer, C. J. L. M., & Muñoz, N. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Journal of Pathology, 189(1), 12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
Wang, N., Hou, M. S., Zhan, Y., Shen, X. B., & Xue, H. Y. (2018). MALAT1 promotes cisplatin resistance in cervical cancer by activating the PI3K/AKT pathway. European Review for Medical & Pharmacological Sciences, 22(22), 7653–7659. https://doi.org/10.26355/eurrev_201811_16382
Wang, M., Fu, L., Xu, Y., Ma, S., Zhang, X., & Zheng, L. (2023). A comprehensive overview of exosome lncRNAs: Emerging biomarkers and potential therapeutics in gynecological cancers. Frontiers in Oncology, 13, 1138142. https://doi.org/10.3389/fonc.2023.1138142
Wen, K., Wang, L., Su, H., Yu, L., Zhang, S., Wei, M., ... & Guo, Y. (2025). Development of a m6A-and ferroptosis-related LncRNA signature for forecasting prognosis and treatment response in cervical cancer. BMC cancer, 25(1), 580. https://doi.org/10.1186/s12885-025-13974-8
Wu, S., Liu, L., Xu, H., Zhu, Q., & Tan, M. (2023). The involvement of MALAT1-ALKBH5 signaling axis into proliferation and metastasis of human papillomavirus-positive cervical cancer. Cancer Biology & Therapy, 24(1), 2249174. https://doi.org/10.1080/15384047.2023.2249174
Yin, X., Liu, X., Gong, H., & Chu, Z. (2024). LncRNA STARD7-AS1 suppresses cervical cancer cell proliferation while promoting autophagy by regulating miR-31-5p/TXNIP axis to inactivate the mTOR signaling. Journal of Gynecologic Oncology, 35(4), e97. https://doi.org/10.3802/jgo.2024.35.e97
Yu, Y., Xie, Z., Zhao, M., & Lian, X. (2021). Identification of PIK3CA multigene mutation patterns associated with superior prognosis in stomach cancer. BMC Cancer, 21, 1–15. https://doi.org/10.1186/s12885-021-08115-w
Yu, L., Chen, X., Liu, X., Fei, L., Ma, H., Tian, T., Wang, L., & Chen, S. (2022). Significance of triple detection of p16/ki-67 dual-staining, liquid-based cytology and HR HPV testing in screening of cervical cancer: a retrospective study. Frontiers in Oncology, 12, 915418. https://doi.org/10.3389/fonc.2022.915418
Zhang, J., Liu, S. C., Luo, X. H., Tao, G. X., Guan, M., Yuan, H., & Hu, D. K. (2016). Exosomal Long noncoding RNAs are differentially expressed in the Cervicovaginal lavage samples of cervical cancer patients. Journal of clinical laboratory analysis, 30(6), 1116-1121. https://doi.org/10.1002/jcla.21990
Zhang, W., Wu, Q., Liu, Y., Wang, X., Ma, C., & Zhu, W. (2022). LncRNA HOTAIR promotes chemoresistance by facilitating epithelial to mesenchymal transition through miR-29b/PTEN/PI3K signaling in cervical cancer. Cells Tissues Organs, 211(1), 16–29. https://doi.org/10.1159/000519844
Zhang, X., Jin, M., Liu, S., Zang, M., Hu, L., Du, T., & Zhang, B. (2023). The roles and molecular mechanisms of long non-coding RNA WT1-AS in the maintenance and development of gastric cancer stem cells. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14655
Zhang Y. (2024). LncRNA-encoded peptides in cancer. Journal of hematology & oncology, 17(1), 66. https://doi.org/10.1186/s13045-024-01591-0
Zhao, Y., Dong, X., & Hou, R. (2020). lncRNA PICART1 alleviates progression of cervical cancer by upregulating TCF21. Oncology Letters, 19(6), 3719–3724. https://doi.org/10.3892/ol.2020.11486
Zhou, Y., Jin, X., Ma, J., Ding, D., Huang, Z., Sheng, H., Yan, Y., Pan, Y., Wei, T., & Wang, L. (2021a). HDAC5 loss impairs RB repression of pro-oncogenic genes and confers CDK4/6 inhibitor resistance in cancer. Cancer Research, 81(6), 1486–1499. https://doi.org/10.1158/0008-5472.CAN-20-2828
Zhou, Y., Wang, Y., & Lin, M. (2021b). LncRNA HOTAIR Promotes Proliferation and Inhibits Apoptosis by Sponging miR-214-3p in HPV16 Positive Cervical Cancer Cells. Can-cer Cell International, 21(1), 400. https://doi.org/10.1186/s12935-021-02103-7
Zhou, Y., Tao, L., Qiu, J., Xu, J., Yang, X., Zhang, Y., Tian, X., Guan, X., Cen, X., & Zhao, Y. (2024). Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduction and Targeted Therapy, 9(1), 132. https://doi.org/10.1038/s41392-024-01823-2

Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.