Valorization of Sesame By-Products: Chemical and Functional Properties after Extrusion Processing
PDF (Español (España))

Keywords

Sesame by-product
extrusion
techno-functional
proximal composition
WAI
WSI

Métricas de PLUMX 

Abstract

Sesame (Sesamum indicum L.) is a seed rich in lipids (⁓50%), protein (17-35%), and carbohydrates (14-24%). It is primarily used for oil extraction; however, the residual by-product generated could be utilized as a functional ingredient due to its high content of bioactive compounds. The extrusion process is a high-temperature/short-time process that offers great versatility in obtaining products and improving their nutritional and nutraceutical quality. The aim of this study was to evaluate the chemical, physicochemical, and techno-functional characteristics of sesame by-product flour obtained under optimized extrusion conditions. Sesame by-product flour was used, which was processed at 139°C and 80 rpm in a single screw extruder. The flour was characterized chemically, physicochemically, and techno-functionally, and compared against non-extruded sesame by-product flour. Extrusion process increased insoluble and total dietary fiber in 122.22% and 1.68%, respectively. Also, extrusion process increased bulk density, water activity, total color difference, water solubility index, dispersibility, and emulsion activity and stability of sesame by-product flour. Extrusion process is an adequate technology for improve some flours characteristics like dietary fiber and techno-functional properties. Extruded flour could be used in the development of functional foods due to its good chemical and techno-functional characteristics, making it suitable for functional beverages production.

https://doi.org/10.15741/revbio.13.e2016
PDF (Español (España))

References

Association of Official Analytical Chemists [AOAC]. (2023). Official methods of analysis of AOAC International. 22nd Ed. New York, USA. Online edn, AOAC Publications, 4 Jan. 2023, https://doi.org/10.1093/9780197610145.001.0001

Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Critical Reviews in Food Science and Nutrition, 56(3), 445-473. https://doi.org/10.1080/10408398.2013.779568

Ali, S., Singh, B., & Sharma, S. (2017). Development of high‐quality weaning food based on maize and chickpea by twin‐screw extrusion process for low‐income populations. Journal of Food Process Engineering, 40(3), e12500. https://doi.org/10.1111/jfpe.12500

Álvarez-Ossorio, C., Orive, M., Sanmartín, E., Alvarez-Sabatel, S., Labidi, J., Zufia, J., & Bald, C. (2022). Composition and techno-functional properties of grape seed flour protein extracts. ACS Food Science & Technology, 2(1), 125-135. https://doi.org/10.1021/acsfoodscitech.1c00367

Arribas, C., Cabellos, B., Sánchez, C., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2017) The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food & Function, 8(10), 3654-3663. https://doi.org/10.1039/C7FO00910K

Banerjee, A., Ganguly, S., Chatterjee, N., & Dhar, P. (2022). Evaluating the nutritional composition, anti-oxidative, and prebiotic properties of deoiled sesame and linseed meals. Research Journal of Agricultural Science, 13, 1639-1643. https://www.researchgate.net/profile/Pubali-Dhar/publication/364809140_Evaluating_the_Nutritional_Composition_Anti-_oxidative_and_Prebiotic_Properties_of_de-oiled_Sesame_and_Linseed_Meals/links/635ab4c812cbac6a3e001bb7/Evaluating-the-Nutritional-Composition-Anti-oxidative-and-Prebiotic-Properties-of-de-oiled-Sesame-and-Linseed-Meals.pdf

Becker, F. S., Eifert, E. D. C., Soares Junior, M. S., Tavares, J. A. S., & Carvalho, A. V. (2014). Physical and functional evaluation of extruded flours obtained from different rice genotypes. Ciência e Agrotecnologia, 38(4), 367-374. https://doi.org/10.1590/S1413-70542014000400007

Bukya, A., &Vijayakumar, T. P. (2013). Properties of industrial fractions of sesame seed (Sesamum indicum L.). International Journal of Agricultural and Food Science, 3(3), 86-89. https://d1wqtxts1xzle7.cloudfront.net/34400360/sesame-libre.pdf?1407535212=&response-content-disposition=inline%3B+filename%3DProperties_of_industrial_fractions_of_se.pdf&Expires=1766521783&Signature=Cx4fsSYeeWRsbIpWE6K3dE~IN1WIIhQWX~~aqsT~ht8~36KC5H4b9ITozuXTIjlvjFXqc~tSmKA4SjflDZUI6gYr6OqJmk37IOzdp7LmmQdAo8721dxxL4p6yjiSHs25JYVREvbg8OIvG0z1dEbGHMYCOhr32xZLDovaSigYbaI78vIvbyclouYW0u-F~aZikmRC1TPAious9cm3sBv5EkQ3eBRSmhv4XSxM1xfOFHXhc14gygJ3MJxsxQi18LBKcMKEF3kU2zvpoz4refRd7Uo~GKEJHgK4m68yYx41KORybYyLqcHp2WNMSTfTfS3VFSFALA9jsJpif1JUqu4Jug__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52, 3681-3688. https://doi.org/10.1007/s13197-014-1427-2

Costa do Nascimento, E. M. G., Piler Carvalho, C. W., Takeiti, C. Y., Castro Freitas, D. D. G., & Ramirez Ascheri, J. L. (2012). Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates. Food Research International, 45(1), 434-443. https://doi.org/10.1016/j.foodres.2011.11.009

Dalbhagat, C. G., Mahato, D. K., & Mishra, H. N. (2019). Effect of extrusion processing on physicochemical, functional and nutritional characteristics of rice and rice-based products: A review. Trends in Food Science & Technology, 85, 226-240. https://doi.org/10.1016/j.tifs.2019.01.001

Du, S. K., Jiang, H., Yu, X., & Jane, J. L. (2014). Physicochemical and functional properties of whole legume flour. LWT-Food Science and Technology, 55(1), 308-313. https://dx.doi.org/10.1016/j.lwt.2013.06.001

Elsorady, M. E. (2020). Characterization and functional properties of proteins isolated from flaxseed cake and sesame cake. Croatian Journal of Food Science and Technology, 12(1), 77-83. https://doi.org/10.17508/CJFST.2020.12.1.10

Escobedo-Avellaneda, Z., Colin-Oviedo, Á., Buitimea-Cantúa, G. V., Pérez-Carrillo, E., Chuck-Hernández, C., Espinosa-Ramírez, J., Castagnini, J. M., & Welti-Chanes, J. (2025). Extrusion effects on composition, protein digestibility, and functional properties of cold-pressed oilseed cakes. CyTA - Journal of Food, 23 (1), 2549373. https://doi.org/10.1080/19476337.2025.2549373

Fernandes, M. S., Wang, S. H., Ascheri, J. L. R., Oliveira, M. F., & Costa, S. A. J. (2003). Efeito da temperatura de extrusão na absorção de água, solubilidade e dispersibilidade da farinha précozida de milho-soja (70,30). Food Science and Technology, 23, 234–239. https://doi.org/10.1590/S0101-20612003000200023

Gómez-Favela, M. A., Reyes-Moreno, C., Milán-Carrillo, J., Partida-Preciado, R. A., Espinoza-Moreno, R. J., Preciado-Ortiz, R., & Gutiérrez-Dorado, R. (2021). Gluten-free healthy snack with high nutritional and nutraceutical value elaborated from a mixture of extruded underutilized grains (quality protein maize/tepary bean). Acta Universitaria, 31, https://doi.org/10.15174/au.2021.3024

Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science & Technology, 99, 284-294. https://doi.org/10.1016/j.tifs.2020.03.012

Gulati, P., Brahma, S., & Rose, D. J. (2020). Impacts of extrusion processing on nutritional components in cereals and legumes: Carbohydrates, proteins, lipids, vitamins, and minerals. In Ganjyal, G. M. (Eds). Extrusion cooking (pp. 415-443). Woodhead Publishing. https://doi.org/10.1016/C2020-0-02148-1

Huffman, V. L., Lee, C. K., & Burns, E. E. (1975). Selected functional properties of sunflower meal (Helianthus annuus). Journal of Food Science, 40(1), 70-74. https://doi.org/10.1111/j.1365-2621.1975.tb03738.x

Kamau, E. H., Nkhata, S. G., & Ayua, E. O. (2020). Extrusion and nixtamalization conditions influence the magnitude of change in the nutrients and bioactive components of cereals and legumes. Food Science & Nutrition, 8(4), 1753-1765. https://doi.org/10.1002/fsn3.1473

Mehraj, M., Naik, H.R., Reshi, M., Mir, S.A., & Rouf, A. (2018). Development and evaluation of extruded production of extruded product of rice flour and apple pomace. Development, 13(1), 21–26. https://www.researchgate.net/profile/S-Mir/publication/325687779_Apple_pomace/links/5b1e4fba45851587f29fe6e1/Apple-pomace.pdf

Melo, D., Álvarez-Ortí, M., Nunes, M. A., Costa, A. S., Machado, S., Alves, R. C., Pardo, J. E., & Oliveira, M. B. P. (2021). Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods, 10(9), 2108. https://doi.org/10.3390/foods10092108

Mora-Escobedo, R., Paredes-López, O., & Gutiérrez-López, G.F. (1991). Effect of germination on the rheological and functional properties of amaranth sedes. LWT – Food Science and Technology, 24(3), 241-246. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5012274

Nagar, P., Agrawal, M., & Agrawal, K. (2022). Sesame (Sesamum indicum L.) seed as a functional food: A review. The Pharma Innovation Journal, 11, 893-896. https://www.thepharmajournal.com/archives/2022/vol11issue9/PartJ/11-8-328-594.pdf

Nahemiah, D., Nkama, I., Bada, M.H., Gbenyi, D.I., Idakwo, P.Y., Ndindeng, S.A., & Moreira, J. (2017). Multiple parameter optimization of hydration characteristics and proximate compositions of Rice-soybean extruded foods. Open Access Library Journal, 4, 1–22. https://doi.org/10.4236/oalib.1102930

Nahemiah, D., Nkama, I., & Badau, M. (2016). Application of response surface methodology (RSM) for the production and optimization of extruded instant porridge from broken Rice fractions blended with cowpea. International Journal of Food Nutrition and Food Sciences, 5, 105–116. https://doi.org/10.11648/j.ijnfs.20160502.13

Natabirwa, H., Muyonga, J. H., Nakimbugwe, D., & Lungaho, M. (2018). Physico‐chemical properties and extrusion behaviour of selected common bean varieties. Journal of the Science of Food and Agriculture, 98(4), 1492-1501. https://doi.org/10.1002/jsfa.8618

NOM (2007). Norma Oficial Mexicana NMX-FF-034/1-SCFI-2002. https://sitios1.dif.gob.mx/alimentacion/docs/NMX-FF-034-1-SCFI-2002_MAIZ_blanco.pdf.

Patil, S. S., & Kaur, C. (2018). Current trends in extrusion: Development of functional foods and novel ingredients. Food Science and Technology Research, 24(1), 23-34. https://doi.org/10.3136/fstr.24.23

Pismag, R. Y., Rivera, J. D., Hoyos, J. L., Bravo, J. E., & Roa, D. F. (2024). Effect of extrusion cooking on physical and thermal properties of instant flours: a review. Frontier in Sustainable Food System, 8:1398908. https://doi.org/10.3389/fsufs.2024.1398908

Quintero-Soto, M. F., Espinoza-Moreno, R. J., Félix-Medina, J. V., Salas-López, F., López-Carrera, C. F., Argüelles-López, O. D., Vázquez-Ontiveros, M.E., & Gómez-Favela, M. A. (2022). Comparison of phytochemical profile and in vitro bioactivity of beverages based on the unprocessed and extruded sesame (Sesamum indicum L.) seed byproduct. Foods, 11(20), 3175. https://doi.org/10.3390/foods11203175

Rathod, R. P., & Annapure, U. S. (2017). Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT- Food Science and Technology, 80, 121-130. https://doi.org/10.1016/j.lwt.2017.02.001

Ruiz-Armenta, X. A., Ruiz-Armenta, J. E., Espinoza-Moreno, R. J., Gutiérrez-Dorado, R., Aguilar-Palazuelos, E., Zazueta-Morales, J. J., & Gómez-Favela, M. A. (2022). Use of sesame by-product and optimized extrusion to obtain a functional flour with improved techno-functional, nutritional and antioxidant properties. Acta Universitaria, 32, e3494. https://doi.org/10.15174/au.2022.3494

Sharma, C., Singh, B., Hussain, S. Z., & Sharma, S. (2017). Investigation of process and product parameters for physicochemical properties of rice and mung bean (Vigna radiata) flour based extruded snacks. Journal of Food Science and Technology, 54(6), 1711-1720. https://doi.org/10.1007/s13197-017-2606-8

Sharma, L., Saini, C. S., Punia, S., Nain, V., & Sandhu, K. S. (2021). Sesame (Sesamum indicum) seed. In: Tanwar, B., Goyal, A. (Eds). Oilseeds: health attributes and food applications (pp. 305-330). Springer, Singapore. https://doi.org/10.1007/978-981-15-4194-0_12

Takeungwongtrakul, S., Thavarang, P., & Sai-Ut, S. (2020). Development of strawberry gummy jelly with reduced sugar content from strawberry syrup. International Journal of Agricultural Technology, 16(5), 1267-1276. https://li04.tci-thaijo.org/index.php/IJAT/article/view/7426/1404

Udachan, I., & Sahoo, A. K. (2017). Quality evaluation of gluten free protein rich broken rice pasta. Journal of Food Measurement and Characterization, 11, 1378-1385. https://doi.org/10.1007/s11694-017-9516-3

Wang, P., Fu, Y., Wang, L., Saleh, A. S., Cao, H., & Xiao, Z. (2017). Effect of enrichment with stabilized rice bran and extrusion process on gelatinization and retrogradation properties of rice starch. Starch‐Stärke, 69(7-8), 1600201. https://doi.org/10.1002/star.201600201

Wang, S., Chao, C., Xiang, F., Zhang, X., Wang, S., & Copeland, L. (2018). New insights into gelatinization mechanisms of cereal endosperm starches. Scientific Reports, 8(1), 3011. https://doi.org/10.1038/s41598-018-21451-5

Ye, J., Hu, X., Luo, S., Liu, W., Chen, J., Zeng, Z., & Liu, C. (2018). Properties of starch after extrusion: A review. Starch‐Stärke, 70(11-12), 1700110. https://doi.org/10.1002/star.201700110

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.