Resumen
Los suplementos alimenticios y/o remedios herbolarios pueden coadyuvar a minimizar la aparición de patologías, sin embargo, son necesarios estudios funcionales y toxicológicos para determinar su eficacia y posible toxicidad. El objetivo de la presente investigación fue evaluar el potencial antioxidante y biofuncional de suplementos alimenticios, hechos a base de extractos botánicos. Para esto se determinó la capacidad antioxidante, capacidad reductora total, contenido de flavonoides totales y toxicidad in vitro. Además, se identificaron los compuestos orgánicos volátiles mediante cromatografía de gases acoplado a espectrometría de masas y se evaluó su biofuncionalidad mediante estudios bioinformáticos. Se observó el potencial antioxidante de los suplementos, debido al contenido de compuestos con capacidad reductora total, además de su aporte de terpenos, ácidos grasos (ácido hexadecanoico) y fitoesteroles. El producto con mayor actividad antioxidante no presentó toxicidad en el modelo de Artemia salina. El estudio in silico arrojó que los posibles objetivos de los compuestos en el organismo se encuentren relacionados con la inhibición de la patogénesis de algunas de las enfermedades crónico-degenerativas con mayor incidencia y prevalencia en México como la diabetes e hipertensión.
Citas
Ali, A., Chua, B. L. & Chow, Y. H. (2019). An insight into the extraction and fractionation technologies of the essential oils and bioactive compounds in Rosmarinus officinalis L.: Past, present and future. Trends in Analytical Chemistry, 118, 338-351. https://doi.org/10.1016/j.trac.2019.05.040
Allenspach, M., Valder, C., Flamm, D., Grisoni, F. & Steuer, C. (2020). Verification of Chromatographic Profile of Primary Essential Oil of Pinus sylvestris L. Combined with Chemometric Analysis. Molecules, 25(13), 2973. https://doi.org/10.3390/molecules25132973
Altir, N. K. M., Ali, A. M. A., Gaafar, A.-R. Z., Qahtan, A. A., Abdel-Salam, E. M., Alshameri, A., Hodhod, M. S. & Almunqedhi, B. (2021). Phytochemical profile, in vitro antioxidant, and anti-protein denaturation activities of Curcuma longa L. rhizome and leaves. Open Chemistry, 19(1), 945-952. https://doi.org/10.1515/chem-2021-0086
Amagase, H. & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7), 1702-1717. https://doi.org/10.1016/j.foodres.2011.03.027
Aydιn, A., Aktay, G. & Yesilada, E. (2016). A Guidance Manual for the Toxicity Assessment of Traditional Herbal Medicines. Natural Product Communications, 11(11), 1763-1773. https://doi.org/10.1177/1934578X1601101131
Bajac, J., Zengin, G., Mitrović, I., Antić, I., Radojković, M., Nikolovski, B. & Terzić, M. (2023). Juniper berry essential oils as natural resources of biological and pharmacological high-valuable molecules. Industrial Crops and Products, 204, 117248. https://doi.org/10.1016/j.indcrop.2023.117248
Ben Mrid, R., Bouchmaa, N., Bouargalne, Y., Ramdan, B., Karrouchi, K., Kabach, I., El Karbane, M., Idir, A., Zyad, A. & Nhiri, M. (2019). Phytochemical Characterization, Antioxidant and In Vitro Cytotoxic Activity Evaluation of Juniperus oxycedrus Subsp. oxycedrus Needles and Berries. Molecules, 24(3), 502. https://doi.org/10.3390/molecules24030502
Braune, S., Krüger-Genge, A., Kammerer, S., Jung, F. & Küpper, J.-H. (2021). Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life, 11(2), 91. https://doi.org/10.3390/life11020091
Brzezicha, J., Błażejewicz, D., Brzezińska, J. & Grembecka, M. (2021). Green coffee VS dietary supplements: A comparative analysis of bioactive compounds and antioxidant activity. Food and Chemical Toxicology, 155, 112377. https://doi.org/10.1016/j.fct.2021.112377
Bruins, M. J., Van Dael, P. & Eggersdorfer, M. (2019). The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients, 11(1), 85. https://doi.org/10.3390/nu11010085
Byrne, N. J., Rajasekaran, N. S., Abel, E. D. & Bugger, H. (2021). Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radical Biology and Medicine, 169, 317-342. https://doi.org/10.1016/j.freeradbiomed.2021.03.046
Charlton, A., Garzarella, J., Jandeleit-Dahm, K. A. M. & Jha, J. C. (2021). Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes. Biology, 10(1), 18. https://doi.org/10.3390/biology10010018
Criollo-Mendoza, M. S., Ramos-Payán, R., Contreras-Angulo, L. A., Gutiérrez-Grijalva, E. P., León-Félix, J., Villicaña, C., Angulo-Escalante, M. A. & Heredia, J. B. (2022). Cytotoxic Activity of Polyphenol Extracts from Three Oregano Species: Hedeoma patens, Lippia graveolens and Lippia palmeri, and Antiproliferative Potential of Lippia graveolens against Two Types of Breast Cancer Cell Lines (MDA-MB-231 and MCF-7). Molecules, 27(16), 5240. https://doi.org/10.3390/molecules27165240
Danise, T., Innangi, M., Curcio, E., Piccolella, S., Fioretto, A. & Pacifico, S. (2021). White poplar (Populus alba L.) leaf waste recovery and intercropping outcome on its polyphenols. Industrial Crops and Products, 171, 113866. https://doi.org/10.1016/j.indcrop.2021.113866
Das, G., Gonçalves, S., Basilio Heredia, J., Romano, A., Jiménez-Ortega, L. A., Gutiérrez-Grijalva, E. P., & Patra, J. K. (2022). Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. Journal of Functional Foods, 97, 105045. https://doi.org/10.1016/j.jff.2022.105045
Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., Wiegers, J., Wiegers, T. C. & Mattingly, C. J. (2021). Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Research, 49(1), 1138-1143. https://doi.org/10.1093/nar/gkaa891
Ebrahimzadeh, M. A., Khalili, M. & Dehpour, A. A. (2018). Antioxidant activity of ethyl acetate and methanolic extracts of two marine algae, Nannochloropsis oculata and Gracilaria gracilis - an in vitro assay. Brazilian Journal of Pharmaceutical Sciences, 54(1), 6. https://doi.org/10.1590/s2175-97902018000117280
Elsbaey, M., Amen, Y., Nakagawa, T. & Shimizu, K. (2019). White poplar: Targeted isolation of pancreatic lipase inhibitors. Industrial Crops and Products, 141, 111778. https://doi.org/10.1016/j.indcrop.2019.111778
Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W. & Walker, R. B. (2010). Thorough Study of Reactivity of Various Compound Classes toward the Folin−Ciocalteu RGAEent. Journal of Agricultural and Food Chemistry, 58(14), 8139-8144. https://doi.org/10.1021/jf1005935
Falasca, A., Melck, D., Paris, D., Saviano, G., Motta, A. & Iorizzi, M. (2014). Seasonal changes in the metabolic fingerprint of Juniperus communis L. berry extracts by 1H NMR-based metabolomics. Metabolomics, 10(1), 165-174. https://doi.org/10.1007/s11306-013-0566-1
Ferguson, J. J. A., Stokanovski, E., MacDonald-Wicks., Garg, M. L. (2018). Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial. Metabolism Clinical and Experimental, 82, 22-35. https://doi.org/10.1016/j.metabol.2017.12.009
Ferretti, G., Bacchetti, T., Masciangelo, S. & Bicchiega, V. (2010). Effect of phytosterols on copper lipid peroxidation of human low-density lipoproteins. Nutrition, 26(3), 296-304. https://doi.org/10.1016/j.nut.2009.04.015
Fierascu, I., Ungureanu, C., Avramescu, S. M., Cimpeanu, C., Georgescu, M. I., Fierascu, R. C., Ortan, A., Sutan, A. N., Anuta, V., Zanfirescu, A., Dinu-Pirvu, C. E. & Velescu, B. S. (2018). Genoprotective, antioxidant, antifungal and anti-inflammatory evaluation of hydroalcoholic extract of wild-growing Juniperus communis L. (Cupressaceae) native to Romanian southern sub-Carpathian hills. Complementary and Alternative Medicine, 18(3). https://doi.org/10.1186/s12906-017-2066-8
Figueiredo, A. C., Barroso, J. G., Pedro, L. G. & Scheffer, J. J. C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal, 23(4), 213-226. https://doi.org/10.1002/ffj.1875
Finamore, A., Palmery, M., Bensehaila, S. & Peluso, I. (2017). Antioxidant, Immunomodulating, and Microbial-Modulating Activities of the Sustainable and Ecofriendly Spirulina. Oxidative Medicine and Cellular Longevity, 2017, 3247528-3247528. https://doi.org/10.1155/2017/3247528
Food and Drug Administration [FDA]. (2022a) Introducción básica a los suplementos dietéticos. https://www.fda.gov/consumers/articulos-para-el-consumidor-en-espanol/introduccion-basica-los-suplementos-dieteticos
Food and Drug Administration [FDA]. (2022b) Mixing Medications and Dietary Supplements Can Endanger Your Health. https://www.fda.gov/consumers/consumer-updates/mixing-medications-and-dietary-supplements-can-endanger-your-health#:~:text=Certain%20dietary%20supplements%20can%20change,of%20the%20medication%20you%20need.
Ginter, E., Simko, V. & Panakova, V. (2014). Antioxidants in health and disease. Bratislava Medical Journal, 115(10), 603-606. https://doi.org/10.4149/bll_2014_116
Guleria, I., Kumari, A., Lacaille-Dubois, M. A., Nishant, Kumar, V., Saini, A. K., Dhatwalia, J. & Lal, S. (2021). A review on the genus Populus: a potential source of biologically active compounds. Phytochemistry Reviews, 21, 987-1046. https://doi.org/10.1007/s11101-021-09772-2
Gutiérrez-Grijalva, E. P., Leyva-López, N., Vazquez-Olivo, G. & Heredia, J. B. (2022). Oregano as a potential source of antidiabetic agents. Journal of Food Biochemistry, 46(12), e14388. https://doi.org/10.1111/jfbc.14388
Gutiérrez-Rebolledo, G. A., Galar-Martínez, M., García-Rodríguez, R. V., Chamorro-Cevallos, G. A., Hernández-Reyes, A. G. & Martínez-Galero, E. (2015). Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats. Journal of Medicinal Food, 18(8), 865-871. https://doi.org/10.1089/jmf.2014.0117
Habashy, N. H., Abu Serie, M. M., Attia, W. E. & Abdelgaleil, S. A. M. (2018). Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. Journal of Functional Foods, 40, 317-328. https://doi.org/10.1016/j.jff.2017.11.022
Hamulka, J., Jeruszka-Bielak, M., Górnicka, M., Drywień, M. E. & Zielinska-Pukos, M. A. (2021). Dietary Supplements during COVID-19 Outbreak. Results of Google Trends Analysis Supported by PLifeCOVID-19 Online Studies. Nutrients, 13(1), 54. https://doi.org/10.3390/nu13010054
Hassan, S., Egbuna, C., Tijjani, H., Ifemeje, J. C., Olisah, M. C., Patrick-Iwuanyanwu, K. C., Onyeike, P. C. & Ephraim-Emmanuel, B. C. (2020). Dietary Supplements: Types, Health Benefits, Industry and Regulation. In: Egbuna, C., Dable Tupas, G. (eds.). Functional Foods and Nutraceuticals: Bioactive Components, Formulations and Innovations (pp. 23-38). Springer, Cham. International Publishing. https://doi.org/10.1007/978-3-030-42319-3_3
Ho, K. K. H. Y. & Redan, B. W. (2022). Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Critical Reviews in Food Science and Nutrition, 62(2), 508-526. https://doi.org/10.1080/10408398.2020.1821598
Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. & Prior, R. L. (2002). High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. Journal of Agricultural and Food Chemistry, 50(16), 4437-4444. https://doi.org/10.1021/jf0201529
Ibrahim, N. A., El-Seedi, H. R. & Mohammed, M. M. D. (2007). Phytochemical investigation and hepatoprotective activity of Cupressus sempervirens L. leaves growing in Egypt. Natural Product Research, 21(10), 857-866. https://doi.org/10.1080/14786410601132477
Jayaprakasha, G. K., Rao, M. L. & Sakariah, K. K. (2005). Chemistry and biological activities of C. longa. Trends in Food Science & Technology, 16 (12), 533-548. https://doi.org/10.1016/j.tifs.2005.08.006
Jegal, J., Chung, K. W., Chung, H. Y., Jeong, E. J. & Yang, M. H. (2017). The Standardized Extract of Juniperus communis Alleviates Hyperpigmentation in Vivo HRM-2 Hairless Mice and in Vitro Murine B16 Melanoma Cells. Biological and Pharmaceutical Bulletin, 40(9), 1381-1388. https://doi.org/10.1248/bpb.b17-00122
Ji, W. & Ji, X. (2021). Comparative Analysis of Volatile Terpenes and Terpenoids in the Leaves of Pinus Species—A Potentially Abundant Renewable Resource. Molecules, 26(17), 5244. https://doi.org/10.3390/molecules26175244
Karadag, A., Ozcelik, B. & Saner, S. (2009). Review of Methods to Determine Antioxidant Capacities. Food Analytical Methods, 2, 41-60. https://doi.org/10.1007/s12161-008-9067-7
Karchesy, Y. M., Kelsey, R. G., Constantine, G. & Karchesy, J. J. (2016). Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay. Springer Plus, 5. https://doi.org/10.1186/s40064-016-2145-1
Kimura, E. T., Ebert, D. M. & Dodge, P. W. (1971). Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicology and Applied Pharmacology, 19(4), 699-704. https://doi.org/10.1016/0041-008X(71)90301-2
Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J. & Fett, R. (2005). Aplicação de diversos métodos químicos para determinar atividade antioxidante em polpa de frutas. Food Science and Technology, 25(4), 726-732. https://doi.org/10.1590/S0101-20612005000400016
Lamuela-Raventós, R. M. (2018). Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of Antioxidant Activity & Capacity. https://doi.org/10.1002/9781119135388.ch6
Leyva-López, N., Gutierrez-Grijalva, E. P., Ambriz-Perez, D. L. & Heredia, J. B. (2016). Flavonoids as Cytokine Modulators: A Possible Therapy for Inflammation-Related Diseases. International Journal of Molecular Sciences, 17(6), 921. https://doi.org/10.3390/ijms17060921
Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Yan, G. (2007). Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chemistry, 105(2), 548-554. https://doi.org/10.1016/j.foodchem.2007.04.008
Liu, X.-G., Wu, S.-Q., Li, P. & Yang, H. (2015). Advancement in the chemical analysis and quality control of flavonoid in Ginkgo biloba. Journal of Pharmaceutical and Biomedical Analysis, 113, 212-225. https://doi.org/10.1016/j.jpba.2015.03.006
Lordan, R. (2021). Dietary supplements and nutraceuticals market growth during the coronavirus pandemic – Implications for consumers and regulatory oversight. PharmaNutrition, 18, (100282), 2213-4344. https://doi.org/10.1016/j.phanu.2021.100282
Magalhães, L. M., Santos, F., Segundo, M. A., Reis, S. & Lima, J. L. F. C. (2010). Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta, 83(2), 441-447. https://doi.org/10.1016/j.talanta.2010.09.042
Magalhães, L. M., Segundo, M. A., Reis, S., Lima, J. L. F. C. & Rangel, A. O. S. S. (2006). Automatic Method for the Determination of Folin−Ciocalteu Reducing Capacity in Food Products. Journal of Agricultural and Food Chemistry, 54(15), 5241-5246. https://doi.org/10.1021/jf060324s
Memarzia, A., Khazdair, M. R., Behrouz, S., Gholamnezhad, Z., Jafarnezhad, M., Saadat, S. & Boskabady, M. H. (2021). Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. BioFactors, 47(3), 311-350. https://doi.org/10.1002/biof.1716
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. & McLaughlin, J. L. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Medica, 45(05), 31-34. https://doi.org/10.1055/s-2007-971236
Miceli, N., Marino, A., Köroğlu, A., Cacciola, F., Dugo, P., Mondello, L. & Taviano, M. F. (2020). Comparative study of the phenolic profile, antioxidant and antimicrobial activities of leaf extracts of five Juniperus L. (Cupressaceae) taxa growing in Turkey. Natural Product Research, 34(11), 1636-1641. https://doi.org/10.1080/14786419.2018.1523162
Organización Mundial de la Salud [OMS]. (2022) Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases#:~:text=Cardiovascular%20diseases%20account%20for%20most,disease%20deaths%20caused%20by%20diabetes).
Panusa, A., Petrucci, R., Marrosu, G., Multari, G. & Gallo, F. R. (2015). UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts. Phytochemistry, 115, 79-88. https://doi.org/10.1016/j.phytochem.2015.01.002
Pap, N., Reshamwala, D., Korpinen, R., Kilpeläinen, P., Fidelis, M., Furtado, M. M., Sant’Ana, A. S., Wen, M., Zhang, L., Hellström, J., Marnilla, P., Mattila, P., Sarjala, T., Yang, B., Lima, A. d. S., Azevedo, L., Marjomäki, V. & Granato, D. (2021). Toxicological and bioactivity evaluation of blackcurrant press cake, sea buckthorn leaves and bark from Scots pine and Norway spruce extracts under a green integrated approach. Food and Chemical Toxicology, 153, 112284. https://doi.org/10.1016/j.fct.2021.112284
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U. & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants, 10(5), 811. https://doi.org/10.3390/antiox10050811
Prior, R. L. & Cao, G. (2000). Analysis of Botanicals and Dietary Supplements for Antioxidant Capacity: A Review. Journal of AOAC International, 83(4), 950-956. https://doi.org/10.1093/jaoac/83.4.950
Ramachandra, C. J. A., Cong, S., Chan, X., Yap, E. P., Yu, F. & Hausenloy, D. J. (2021). Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radical Biology and Medicine, 166, 297-312. https://doi.org/10.1016/j.freeradbiomed.2021.02.040
Russo, A., Acquaviva, R., Campisi, A., Sorrenti, V., Di Giacomo, C., Virgata, G., Barcellona, M. L. & Vanella, A. (2000). Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biology and Toxicology, 16(2), 91. https://doi.org/10.1023/A:1007685909018
Sabbatino, F., Conti, V., Liguori, L., Polcaro, G., Corbi, G., Manzo, V., Tortora, V., Carlomagno, C., Vecchione, C., Filippelli, A. & Pepe, S. (2021). Molecules and Mechanisms to Overcome Oxidative Stress Inducing Cardiovascular Disease in Cancer Patients. Life, 11(2), 105. https://doi.org/10.3390/life11020105
Salem, M. A., El-Shiekh, R. A., Fernie, A. R. & Alseekh, S. (2022). Metabolomics-based profiling for quality assessment and revealing the impact of drying of Turmeric (Curcuma longa L.). Scientific Reports, 12, 10288. https://doi.org/10.1038/s41598-022-13882-y
Schneider, I., Gibbons, S. & Bucar, F. (2004). Inhibitory Activity of Juniperus communis on 12(S)-HETE Production in Human Platelets. Planta Medica, 70(5), 471-474. https://doi.org/10.1055/s-2004-818980
Schroder, H. & Navarro, E. (2006). Effects and safety of antioxidant supplementation. Current Topics in Nutraceutical Research, 4(1), 23-33.
Sies, H. (2020). Oxidative Stress: Concept and Some Practical Aspects. Antioxidants, 9(9), 852. https://doi.org/10.3390/antiox9090852
Smirnova, I. E., Kazakova, O. B., Loesche, A., Hoenke, S. & Csuk, R. (2020). Evaluation of cholinesterase inhibitory activity and cytotoxicity of synthetic derivatives of di- and triterpene metabolites from Pinus silvestris and Dipterocarpus alatus resins. Medicinal Chemistry Research, 29(8), 1478-1485. https://doi.org/10.1007/s00044-020-02566-9
Sun, Y., Li, M., Mitra, S., Hafiz Muhammad, R., Debnath, B., Lu, X., Jian, H. & Qiu, D. (2018). Comparative Phytochemical Profiles and Antioxidant Enzyme Activity Analyses of the Southern Highbush Blueberry (Vaccinium corymbosum) at Different Developmental Stages. Molecules, 23(9), 2209. https://doi.org/10.3390/molecules23092209
Swain, T. & Hillis, W. E. (1959). The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63-68. https://doi.org/10.1002/jsfa.2740100110
Taviano, M. F., Marino, A., Trovato, A., Bellinghieri, V., La Barbera, T. M., Güvenç, A., Hürkul, M. M., Pasquale, R. D. & Miceli, N. (2011). Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey. Pharmaceutical Biology, 49(10), 1014-1022. https://doi.org/10.3109/13880209.2011.560161
Tawfeek, N., Sobeh, M., Hamdan, D. I., Farrag, N., Roxo, M., El-Shazly, A. M. & Wink, M. (2019). Phenolic Compounds from Populus alba L. and Salix subserrata Willd. (Salicaceae) Counteract Oxidative Stress in Caenorhabditis elegans. Molecules, 24(10), 1999. https://doi.org/10.3390/molecules24101999
Tegelberg, R., Virjamo, V. & Julkunen-Tiitto, R. (2018). Dry-air drying at room temperature – a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?. Phytochemical Analysis, 29(5), 493-499. https://doi.org/10.1002/pca.2755
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6), 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
Thitimuta, S., Pithayanukul, P., Nithitanakool, S., Bavovada, R., Leanpolchareanchai, J. & Saparpakorn, P. (2017). Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities. Molecules, 22(3), 401. https://doi.org/10.3390/molecules22030401
Vezza, T., Canet, F., de Marañón, A. M., Bañuls, C., Rocha, M. & Víctor, V. M. (2020). Phytosterols: Nutritional Health Players in the Management of Obesity and Its Related Disorders. Antioxidants, 9(12), 1266. https://doi.org/10.3390/antiox9121266
Wanyoike, G. M., Chhabra, S. C.,Lang’at-Thoruwa, C. C. & Omar, S. A. (2004). Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. Journal of Ethnopharmacology, 9(1), 129-133. https://doi.org/10.1016/j.jep.2003.09.047
Wolsko, P. M., Solondz, D. K., Phillips, R. S., Schachter, S. C. & Eisenberg, D. M. (2005). Lack of herbal supplement characterization in published randomized controlled trials. The American Journal of Medicine, 118(10), 1087-1093. https://doi.org/10.1016/j.amjmed.2005.01.076
Yoshida, Y. & Niki, E. (2003). Antioxidant effects of phytosterol and its components. Journal of Nutritional Science and Vitaminology, 49(4), 277-280. https://doi.org/10.3177/jnsv.49.277
Zapata, S., Piedrahita, A. M. & Rojano, B. (2014). Capacidad atrapadora de radicales oxígeno (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspectivas en Nutrición Humana, 16(1), 25-36. https://doi.org/10.17533/udea.penh.20310
Zhang, L., Ho, C.-T., Zhou, J., Santos, J. S., Armstrong, L. & Granato, D. (2019). Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1474-1495. https://doi.org/10.1111/1541-4337.12479
Zhang, Y.-J., Gan, R.-Y., Li, S., Zhou, Y., Li, A.-N., Xu, D.-P. & Li, H.-B. (2015). Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules, 20(12), 21138-21156. https://doi.org/10.3390/molecules201219753
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional