EN PRENSA. Diversidad y estructura genética en poblaciones de Moringa oleifera Lam. cultivadas en México a través de marcadores SNP. EN PRENSA
PDF

Palabras clave

Polimorfismo
genotipificación
recursos genéticos

Métricas de PLUMX 

Resumen

Moringa oleifera es una especie con amplia distribución mundial debido a su capacidad adaptativa y a sus propiedades nutricionales. En México, han ocurrido varias reintroducciones de esta especie y aunque se ha observado diversidad morfológica, se desconoce la amplitud de su diversidad a nivel de ADN. El objetivo fue determinar la diversidad y estructura genética de 14 poblaciones de M. oleifera cultivadas en México a través de SNP. Las semillas se germinaron en invernadero y el ADN se extrajo de hojas y tallos jóvenes mediante un protocolo basado en CTAB. Este ADN se utilizó para realizar el genotipado de cada población con la tecnología DArTseqTM. Se obtuvieron 9,862 SNP, de ellos el 0.64 % fueron polimórficos. Dentro de las poblaciones se observaron niveles moderados de diversidad (Ae=1.52, He=0.33, Ho= 0.44, índice de Shannon = 0.44). El trasfondo genético de las poblaciones permitió visualizar dos grupos a través del análisis de conglomerado y PCoA. La estructura genética de las poblaciones mediante STRUCTURE indicó que la ascendencia proviene de dos poblaciones originales (K = 2). Las 14 poblaciones de moringa son diversas a nivel de ADN de alta calidad para una secuenciación precisa y confiable.

https://doi.org/10.15741/revbio.12.e1747
PDF

Citas

Begna, T. (2022). Role of plant genetic diversity conservation and utilization. International Journal of Novel Research in Life Sciences, 9(1), 1-11. https://www.noveltyjournals.com/upload/paper/ROLE%20OF%20PLANT%20GENETIC-01012022-7.pdf

Botstein, D., White., R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32(3), 314-331.

Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019). The future challenges of food and agriculture: an integrated analysis of trends and solutions. Sustainability, 11(1), 222. https://doi.org/10.3390/su11010222

Chang, Y., Liu, H., Liu, M., Liao, X., Sahu, S. K., Fu, Y., Song, B., Cheng, S., Kariba, R., Muthemba, S., Hendre, P. S., Mayes, S., Ho, W. K., Yssel, A. E. J., Kendabie, P., Wang, S., Li, L., Muchugi, A., Jamnadass, R., Lu, H., Peng, S., Van Deynze, A., Simons, A., Yana-Shapiro, H., Van de Peer, Y., Xu, X., Yang, H., Wang, J., & Liu, X. (2018). The draft genomes of five agriculturally important African orphan crops. GigaScience, 8(3), 1-16. https://doi.org/10.1093/gigascience/giy152

Cheng, J., Kao, H., & Dong, S. (2020). Population genetic structure and gene flow of rare and endangered Tetraena mongolica Maxim. revealed by reduced representation sequencing. BMC Plant Biology, 20(1), Article 391. https://doi.org/10.1186/s12870-020-02594-y

Centro Internacional de Mejoramiento de Maíz y Trigo [CIMMYT]. (2006). Protocolos de laboratorio: Laboratorio de Genética Molecular Aplicada del CIMMYT. (3a ed.). México, D.F. https://repository.cimmyt.org/bitstream/handle/10883/593/91224.PDF?sequence=4&isAllowed=y

Das, D., & Mishra, R. (2021). SNP markers and its impact on crop improvement. Asian Journal of Biological and Life Sciences, 10(3), 539-548. https://doi.org/10.5530/ajbls.2021.10.72

Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Ruas, P.M., Sant’Ana, G.C., Gepts, P., & Gonçalves, L. S. A. (2021). Population structure, genetic diversity and genomic selection signatures among a Brazilian common bean germplasm. Scientific Reports, 11(1), 2964. https://doi.org/10.1038/s41598-021-82437-4

Dube, S. P., Sibiya, J., & Kutu, F. (2023). Genetic diversity and population structure of maize inbred lines using phenotypic traits and single nucleotide polymorphism (SNP) markers. Scientific Reports, 13(1), 17851. https://doi.org/10.1038/s41598-023-44961-3

Earl, D. A., & vonHoldt, B. M. (2012). Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7

Elbasyoni, I. S., Eltaher, S., Morsy, S., Mashaheet, A. M., Abdallah, A. M., Ali, H. G., Mariey, S. A., Baenziger, P. S., & Frels, K. (2022). Novel single-nucleotide variants for morpho-physiological traits involved in enhancing drought stress tolerance in barley. Plants, 11(22), Article 3072. https://doi.org/10.3390/plants11223072

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Gawroński, P., Pawełkowicz, M., Tofil, K., Uszyński, G., Sharifova, S., Ahluwalia, S., Tyrka, M., Wędzony, M., Kilian, A., & Bolibok-Brągoszewska, H. (2016). DArT markers effectively target gene space in the rye genome. Frontiers in Plant Science, 7(6), 1600. https://doi.org/10.3389/fpls.2016.01600

Gouda, A. C., Warburton, M. L., Djedatin, G. L., Kpeki, S. B., Wambugu, P. W., Gnikoua, K., & Ndjiondjop, M. N. (2021). Development and validation of diagnostic SNP markers for quality control genotyping in a collection of four rice (Oryza) species. Scientific Reports, 11(1), 18617. https://doi.org/10.1038/s41598-021-97689-3

Hendre, P. S. & Van Deynze, A. (2015). How a consortium is changing Africa’s food systems? http://www.africanorphancrops.org/category/resources/blog/page/3/

Hendre, P. S., Muthemba, S., Kariba, R., Muchugi, A., Fu, Y., Chang, Y., Song, B., Liu, H., Liu, M., Liao, X., Sahu, S. K., Wang, S., Li, L., Lu, H., Peng, S., Cheng, S., Xu, X., Yang, H., Wang, J., Liu, X., Simons, A., Shapiro, H. Y., Mumm, R. H., Van Deynze, A., & Jamnadass, R. (2019). African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops. Planta, 250(3), 989-1003. https://doi.org/10.1007/s00425-019-03156-9

Huster, A. R., Wallace, L. T., & Myers, J. R. (2021). Associated SNPs, Heritabilities, trait correlations, and genomic breeding values for resistance in snap beans (Phaseolus vulgaris L.) to root rot caused by Fusarium solani (Mart.) f. sp. phaseoli (Burkholder). Frontiers in Plant Science, 12(2021), 697615. https://doi.org/10.3389/fpls.2021.697615

Liu, H., Wang, Z., Zhang, Y., Li, M., Wang, T., & Su, Y. (2023). Geographic isolation and environmental heterogeneity contribute to genetic differentiation in Cephalotaxus oliveri. Ecology and Evolution, 13(3), e9869. https://doi.org/10.1002/ece3.9869

Muhl, Q. E., Toit, E. S. D., & Robbertse, P. J. (2011). Moringa oleifera (Horseradish Tree) leaf adaptation to temperature regimes. International Journal of Agriculture and Biology, 13(6), 10-21. https://www.up.ac.za/media/shared/Legacy/sitefiles/file/48/2056/31fijab1112510211024.pdf

Muli, J. K., Neondo, J. O., Kamau, P. K., Michuki, G. N., Odari, E., & Budambula, N. L. M. (2022). Genetic diversity and population structure of wild and cultivated Crotalaria species based on genotyping-by-sequencing. PLoS ONE, 17(9), e0272955. https://doi.org/10.1371/journal.pone.0272955

Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H., Chung, G., & Baloch, F. S. (2018). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401

Ndhlala, A. R., & Tshabalala, T. (2023). Diversity in the nutritional values of some Moringa oleifera Lam. cultivars. Diversity, 15, 834. https://doi.org/10.3390/d15070834

Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera: un árbol multiusos para las zonas tropicales seca. Revista Mexicana de Biodiversidad, 82(4), 1071-1082. https://doi.org/10.22201/ib.20078706e.2011.4.678

Ousmael, K., Whetten, R. W., Xu, Nielsen, U. B., Lamour, K., & Hansen O. K. (2023). Identification and high-throughput genotyping of single nucleotide polymorphism markers in a non-model conifer (Abies nordmanniana (Steven) Spach). Scientific Reports, 13(2023), 22488. https://doi.org/10.1038/s41598-023-49462-x

Pacheco-Gil, R. Á., Alvarado; G. Rodríguez; F., & Burgueño, J. (2016). BIO-R (Biodiversity analysis with R for Windows) Version 3.3. CIMMYT Research Data & Software Repository Network, 14. https://hdl.handle.net/11529/10820

Pasha, S. N., Shafi, K. M., Joshi, A. G., Meenakshi, I., Harini, K., Mahita, J., Sajeevan, R. S., Karpe, S. D., Ghosh, P., Nitish, S., Gandhimathi, A., Mathew, O. K., Prasanna, S. H., Malini, M., Mutt, E., Naika, M., Ravooru, N., Rao, R. M., Shingate, P. N., Sukhwal, A., Sunitha, M. S., Upadhyay, A. K., Vinekar, R. S., & Sowdhamini, R. (2020). The transcriptome enables the identification of candidate genes behind medicinal value of drumstick tree (Moringa oleifera). Genomics, 112(1), 621–628. https://doi.org/10.1016/j.ygeno.2019.04.014

Peter A. F., Wagiran, A., Rahmat Z., Yusop M. R., & Ridzuan, R. (2023). Exploring genetic variation and therapeutic properties of Moringa oleifera: progress and future potential for crop improvements. Pharmacognosy Reviews, 17(34), 426-438. https://doi.org/10.5530/phrev.2023.17.18

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959. https://doi.org/10.1093/genetics/155.2.945

Raatz, B., Mukankusi, C., Lobaton, J. D., Male, A., Chisale, V., Amsalu, B., Fourie, D., Mukamuhirwa, F., Muimui, K., Mutari, B., Nchimbi-Msolla, S., Nkalubo, S., Tumsa, K., Chirwa, R., Maredia, M. K., & He, C. (2019). Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform: diversity, quality control and molecular breeding. Genetic Resources and Crop Evolution, 66(3), 707–722. https://doi.org/10.1007/s10722-019-00746-0

Ruiz-Hernández, R., Hernandez-Rodriguez, M., Cruz-Monterrosa, R. G., Diaz-Ramirez, M., Martinez-García, C. G., Garcia-Martinez, A., & Amor, A. A. R. (2022a). Moringa oleifera Lam.: una revisión de los factores ambientales y de manejo que influyen en el contenido nutricional de las hojas. Tropical and Subtropical Agroecosystems, 25(1), 1-15. https://doi.org/10.56369/tsaes.4053

Ruiz-Hernández, R., Hernández-Rodríguez, M., Pérez-Vázquez, A., Cruz-Monterrosa, R. G., & Rayas-Amor, A. A., (2022b). Chemical composition of twelve accessions of Moringa oleifera Lam. grown in Mexico. Agro Productividad. 15(11), 11-20. https://doi.org/10.32854/agrop.v15i10.2405

Ruiz-Hernández, R., Pérez-Vázquez, A., García-Pérez, E., Morales-Trejo, F., & Soto-Hernández, R. M. (2021). Caracterización morfológica de accesiones de Moringa oleifera provenientes del sur-sureste de México. Revista Mexicana De Ciencias Agrícolas, 12(7), 1210–2022. https://doi.org/10.29312/remexca.v12i7.2632

Ruiz-Hernández, R., Pérez-Vázquez, A., Hernández-Rodríguez, M., García-Pérez, E., Morales-Trejo, F., & Soto-Hernández, R. M. (2024). Genetic diversity of Moringa oleifera Lam. in southeastern Mexico. Agrociencia, 58(6), 1-17. https://doi.org/10.47163/agrociencia.v58i6.3101

Shyamli, P. S., Pradhan, S., Panda, M., & Parida, A. (2021). De novo whole-genome assembly of Moringa oleifera helps identify genes regulating drought stress tolerance. Frontiers in Plant Science, 12(1), 766999. https://doi.org/10.3389/fpls.2021.766999

Teklemariam, S. S., Bayissa, K. N., Matros, A., Pillen, K., Ordon, F., & Wehner, G. (2022). The genetic diversity of Ethiopian barley genotypes in relation to their geographical origin. PLoS ONE, 17(5), e0260422. https://doi.org/10.1371/journal.pone.0260422

Tian, Y., Zeng, Y., Zhang, J., Yang, C., Yan, L., Wang, X., Shi, C., Xie, J., Dai, T., Peng, L., Zeng Huan, Y., Xu, A., Huang, Y., Zhang, J., Ma, X., Dong, Y., Hao, S., & Sheng, J. (2015). High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Science China Life Sciences, 58(7), 627–638. https://doi.org/10.1007/s11427-015-4872-x

Tomar, V., Dhillon, G. S., Singh, D., Singh, R. P., Poland, J., Joshi, A. K., Tiwari B. S., & Kumar, U. (2021). Elucidating SNP-based genetic diversity and population structure of advanced breeding lines of bread wheat (Triticum aestivum L.). PeerJ, 9, e11593. http://doi.org/10.7717/peerj.11593

Wu, J. C., Zhang, Y. P., Zheng, Y. X., & Peng, X. M. (2018). Pollen mediated gene flow in a small experimental population of Moringa oleifera Lam. (Moringaceae). Industrial Crops and Products, 117(1), 28-33. https://doi.org/10.1016/j.indcrop.2018.02.077

Yirgu, M., Kebede, M., Feyissa, T., Lakew, B., Woldeyohannes, A. B. & Fikere, M. (2023). Single nucleotide polymorphism (SNP) markers for genetic diversity and population structure study in Ethiopian barley (Hordeum vulgare L.) germplasm. BMC Genomic Data, 24(1), 7. https://doi.org/10.1186/s12863-023-01109-6

Zhang, H., Mittal, N., Leamy, L. J., Barazani, O., & Song, B. H. (2017). Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evolutionary Applications, 10(1), 5-24. https://doi.org/10.1111/eva.12434

Zhang, J., Yang, E., He, Q., Lin, M., Zhou, W., Pian, R., & Chen, X. (2019). Genome-wide analysis of the WRKY gene family in drumstick (Moringa oleifera Lam.). PeerJ, 7(1), e7063. https://doi.org/10.7717/peerj.7063

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional