Microbiological quality assessment of treated municipal wastewater effluents for crop irrigation purposes
SPA_pdf (Español (España))
ENG_pdf

Keywords

Crops irrigation
E. coli
Fecal coliforms
Salmonella, Treated municipal wastewater

Métricas de PLUMX 

Abstract

Massive crop production demands enormous volumes of water for irrigation. Water scarcity has led growers to look for suitable alternative water sources. Treated wastewater for agricultural purposes has been documented; however, high microbial loads pose a high risk to consumers of contaminated produce. This study evaluated the microbiological quality of treated wastewater from three artificial canals belonging to two treated municipal wastewater plants in Sinaloa, Mexico. Fecal coliforms, Escherichia coli, and Salmonella were quantified by standard methods in 60 treated wastewater samples. Fecal coliforms and E. coli were quantified from 4.0x102 to 3.9x107 CFU/100 mL and 1.0x102 to 1.0x107 CFU/100 mL, respectively. Salmonella was isolated from 45 samples, with the highest value of 16.14 MPN/L. Most of the examined samples exceeded the national and international microbial limits in water for agricultural purposes. Therefore, treated municipal wastewater from central Sinaloa, Mexico, is unsuitable for agricultural irrigation.

https://doi.org/10.15741/revbio.11.e1543
SPA_pdf (Español (España))
ENG_pdf

References

Adegoke, A. A., Amoah, I. D., Stenström, T. A., Verbyla, M. E., & Mihelcic, J. R. (2018). Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A review. Frontiers in Public Health. 6, 376581. https://doi.org/10.3389/fpubh.2018.00337

Akpor, O. B., & Muchie B. (2011). Environmental and public health implications of wastewater quality. African Journal of Biotechnology. 10(13), 2379-2387. https://doi.org/10.5897/AJB10.1797

Belay, Z., Gelgelu, E., & Chala, B. (2020). Assessment of microbiological quality and drug resistance patterns of raw vegetables irrigated with Hasassa River, West Arsi Zone, Oromia Region, Ethiopia. African Journal of Microbiology Research. 14(9), 507–15. https://doi.org/10.5897/AJMR2019.9205

Burgueño-Roman, A., Castañeda-Ruelas, G. M., Pacheco-Arjona, R., & Jimenez-Edeza, M. (2019). Pathogenic potential of non-typhoidal Salmonella serovars isolated from aquatic environments in Mexico. Genes & Genomics. 41, 767-779. https://doi.org/10.1007/s13258-019-00798-7

Centers for Disease Control and Prevention [Centers for Disease Control and Prevention website]. (2022, January 20). Outbreak of Salmonella Infections Linked to Hy-Vee Spring Pasta Salad-Final Update. https://www.cdc.gov/salmonella/sandiego-07-18/index.html.

Cifuentes, E., Blumenthal, U., Ruiz, G., Bennett, S., & Peasey, A. (1994). Escenario epidemiológico del uso agrícola del agua residual: El Valle del Mezquital, México. Salud pública de México, 1(1), 3-9. https://saludpublica.mx/index.php/spm/article/view/5724/6307

Consejo para el Desarrollo Económico de Sinaloa [Consejo para el Desarrollo Económico de Sinaloa website]. (2023, September 27]. Sinaloa en números: Evolución de los indicadores de la agricultura en Sinaloa durante el 2022. https://sinaloaennumeros.codesin.mx/wp-content/uploads/2023/06/Reporte-24-del-2023-de-Agricultura-en-sinaloa-2022.pdf"https://sinaloaennumeros.codesin.mx/wp-content/uploads/2023/06/Reporte-24-del-2023-de-Agricultura-en-sinaloa-2022.pdf

Dickin, S. K., Schuster-Wallace, C. J., Qadir, M., & Pizzacalla, K. (2016). A review of the health risks and routes of exposure to the use of wastewater in agriculture. Environmental Health Perspectives. 124(7), 900-909. https://doi.org/10.1289/ehp.1509995

Drechsel, P., & Evans, A. E. V. (2010). Wastewater use in irrigated agriculture. Irrigigation and Drainage Systems. 24(1), 1-3. https://doi.org/10.1007/s10795-010-9095-5

Estrada-Acosta, M., Jiménez, M., Chaidez, C., León-Félix, J., & Castro-del Campo, N. (2014). Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production. Environmental Monitoring and Assessment. 186(7), 4323-4330. https://doi.org/10.1007/s10661-014-3701-1

Farhadkhani, M., Nikaeen, M., Yadegarfar, G., Hatamzadeh, M., Pourmohammadbagher, H., Sahbaei, Z., & Rahmani, H. R. (2018). Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Research. 144, 356-364. https://doi.org/10.1016/j.watres.2018.07.047

Ferrer, A., Nguyen-Viet, H., & Zinsstag, J. (2012). Quantification of diarrhea risk related to wastewater contact in Thailand. EcoHealth. 9(1), 49-59. https://doi.org/10.1007/s10393-012-0746-x

Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the Salmonella serovars. WHO collaborating centre for reference and research on Salmonella, 9, 1-166. http://www.scacm.org/free/Antigenic%20Formulae%20of%20the%20Salmonella%20Serovars%202007%209th%20edition.pdf.

Howard, I., Espigares, E., Lardelli, P., Martín, J. L., & Espigares, M. (2004). Evaluation of microbiological and physico-chemical indicators for wastewater treatment. Environmental Toxicology. 19(3), 241–249. https://doi.org/10.1002/tox.20016

Jiménez, C. B., Siebe, G. C., & Cifuentes, G. E. (2005). El reúso intencional y no intencional del agua en el valle de Tula (The intentional and nonintentional reuse of water in the Tula valley). In: El agua en México vista desde la academia, B. Jiménez & L. Marín (ed.). 1st digital Edition. Academia Mexicana de Ciencias, México D.F. México, pp. 47-49. https://agua.org.mx/wp-content/uploads/2010/12/El-agua-en-M%C3%A9xico-vista-desde-la-academia.pdf

Jung, Y., Jang, H., Matthews, K. R. (2014). Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb Biotechnol. 7(6), 517–27. https://doi.org/10.1111/1751-7915.12178

Mohle-Boetani, J. C., Reporter, R., Werner, S. B., Abbott, S., Farrar, J., Waterman, S. H., & Vugia, D. J. (1999). An outbreak of Salmonella serogroup Saphra due to cantaloupes from Mexico. The Journal of Infectious Diseases. 180(4), 1361-1364. https://doi.org/10.1086/314995

NMX-AA-102-SCFI-2006. (2006). Calidad del agua–Detección y enumeración de organismos Coliformes, Organismos Coliformes termotolerantes y Escherichia coli presuntiva – Método de filtración por membrana (Cancela a la NMX-AA-102-1987). Diario Oficial de la Federación.

NOM-001-ECOL-1996. (1996). NORMA Oficial Mexicana NOM-001-ECOL-1996, Que establece los límites máximos permisibles de contaminantes en lasdescargas de aguas residuales en aguas y bienes nacionales. Diario Oficial de la Federación. 24 de Diciembre de 1996.

NOM-003-ECOL-1997. (1998). NORMA Oficial Mexicana NOM-003-ECOL-1997, Que establece los lí­mites máximos permisibles de contaminantes para las aguas residuales tratadas que se reusen en servicios al público. Diario Oficial de la Federación. 22 de Abril de 1998.

NOM-001-SEMARNAT-2021. (2021). NORMA Oficial Mexicana NOM-001-SEMARNAT-2021, Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. Diario Oficial de la Federación.

Ouda, O. K. (2016). Treated wastewater use in Saudi Arabia: challenges and initiatives. International Journal of Water Resources Development. 32(5), 799-809. https://doi.org/10.1080/07900627.2015.1116435

Paillard, D., Dubois, V., Thiebaut, R., Nathier, F., Hogland, E., Caumette, P., & Quentine, C. (2005). Occurrence of Listeria spp. In effluents of French urban wastewater treatment plants. Applied and Environmental Microbiology. 71(11), 7562-7566. https://doi.org/10.1128/AEM.71.11.7562-7566.2005

PROY-NMX-AA-003/3-SCFI-2008. (2008). Aguas residuales-Muestreo (Todas las partes cancelan al PROY NMX-AA-003-SCFI-2006) Parte 3 Guía para el muestreo de aguas residuales. Diario Oficial de la Federación.

Rodríguez-Miranda, J. P., García-Ubaque, C. A., & Pardo-Pinzón, J. (2015). Selección de tecnologías para el tratamiento de aguas residuales municipales. Tecnura, 19(46), 149-164. http://www.scielo.org.co/pdf/tecn/v19n46/v19n46a13.pdf

Trang, D. T., Mølbak, K., Cam, P. D., & Dalsgaard, A. (2007). Incidence of and risk factors for skin ailments among farmers working with wastewater-fed agriculture in Hanoi, Vietnam. Transactions of the Royal Society of Tropical Medicine and Hygiene. 101(5), 502-510. https://doi.org/10.1016/j.trstmh.2006.10.005

United States Environmental Protection Agency. (2012). Method 1200: Analytical Protocol for Non-Typhoidal Salmonella in Drinking Water and Surface Water. (EPA. EPA 817-R-12-004). U.S. Environmental Protection Agency. Washington, DC, USA. https://www.epa.gov/sites/default/files/2015-08/documents/epa817r12004.pdf

Wilkes, G., Edge, T., Gannon, V., Jokinen, C., Lyautey, E., Medeiros, D., Neumann, N., Ruecker, N., Topp, E., & Lapen, D. R. (2009). Seasonal relationships among indicator bacteria, pathogenic bacteria, Cryptosporidium oocysts, Giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Research. 43(8), 2209–2223. https://doi.org/10.1016/j.watres.2009.01.033

World Health Organization. (2006). Guidelines for the safe use of wastewater, excreta and greywater. Volume 4, Excreta and greywater use in agriculture. Geneva. World Health Organization. https://apps.who.int/iris/handle/10665/78265

Xie, J. (2009). Addressing China's Water Scarcity: Recommendations for Selected Water Resource Management Issues. World Bank. ©World Bank. License: CC BY 3.0 IGO." https://openknowledge.worldbank.org/handle/10986/2585

Yanagimoto, K., Yamagami, T., Uematsu, K., & Haramoto, E. (2020). Characterization of Salmonella isolates from wastewater treatment plant influents to estimate unreported cases and infection sources of salmonellosis. Pathogens. 9(1), 52. https://doi.org/10.3390/pathogens9010052

Yin, H. B., & Patel, J. (2018). Comparison of methods to determine the microbial quality of alternative irrigation waters. Agricultural Water Management. 201, 38-45. https://doi.org/10.1016/j.agwat.2018.01.012

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.