Detection of SARS-CoV-2 in drainage systems from tourist buses and bus station in Mexico
SPA_pdf (Español (España))
ENG_pdf

Keywords

SARS-CoV-2
variants of concern
wastewater
buses

Métricas de PLUMX 

Abstract

Any means of public transportation (aircraft, ships, and buses) may carry potentially covid19 positive individuals thus, wastewater-based epidemiology (WBE) should be implemented to avoid further spread. The present study focused on tracing the presence of SARS-CoV-2 in wastewater from holding tanks of national and international route buses, as well as the drainage system at the bus station. Testing was performed by the RT-PCR protocol established by the United States Center for Disease Control and Prevention (CDC). SARS-CoV-2 was detected in 8.88% of the wastewater samples from buses and drainage systems (4 of 45). Positives samples were sequenced, and Delta and Omicron were among the variants most prevalent. Our results show that WBE provides a reliable and sensitive tool for spotting the possible presence of COVID-19-positive individuals arriving by bus to a city. Also, the WBE coupled with Whole Genome Sequencing (WGS) may serve as an early warning to trace and display preventative measures upon the introduction of variants of concern.

https://doi.org/10.15741/revbio.11.e1631
SPA_pdf (Español (España))
ENG_pdf

References

Ahmed, W., Bertsch, P.M., Angel, N., Bibby, K., Bivins, A., Dieners, L., Edson, J., Ehret, J., Gyawali, P., Hamilton, K.A., Hosegood, I., Hugenholtz, P., Jiang, G., Kitajima, M., Sichani, H.T., Shi, J., Shimko, K.M., Simpson, S.L., Smith, W.J.M., Symonds, E.M., Thomas, K.V., Verhagen, R., Zaugg, J., & Mueller, J.F. (2020). Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. Journal of Travelers Medicine, 27(5),1-11. https://doi.org/10.1093/jtm/taaa116

Ahmed, W., Bivins, A., Simpson, S.L., Bertsch, P.M., Ehert, J., Hosegood, I., Metcalfe, S.S., Smith, W.J.M., Thomas, K.V., Tynan, J., & Mueller, F.F. (2022). Wastewater surveillance demonstrates high predictive value for COVID-19 infection on board repatriation flights to Australia. Environment International, 158,106938. https://doi.org/10.1016/j.envint.2021.106938

Arantes, I., Bello, G., Nascimento, V., Souza, V., da Silva, A., Silva, D., Nascimento, F., Mejia M., Brandao, J.M., Gonçalves L., Silva, G., Fernandes da Costa, C., Abdalla, L., Santos, V.H., Amorim Ramos, T.C., Piantham, C., Ito, K., Mendoça Siqueira, M., Resende, P.C., Wallau, G.L., Delatorre, E., Gräf, T., & Naveca, F.G. (2023). Comparative epidemic expansion of SARS-CoV-2 variants Delta and Omicron in the Brazilian state of Amazonas. Nature communications, 14,2048. https://doi.org/10.1038/s41467-023-37541-6

Basavaraju, S., Aswathanarayan, J.B., Basavegowda, M., & Somanathan, B. (2021). Coronavirus: Occurrence, surveillance and persistence in wastewater. Environmental Monitoring and Assessment, 193,508. https://doi.org/10.1007/s10661-021-09303-8

Bertone, M., Mikszewski, A., Stabile, L., Riccio, L., Cortellessa, G., d´Ambrossio, F.R., Papa, V., Morawska, L., & Buonanno, G. (2022). Assessment of SARS-CoV-2 airborne infection transmission risk in public buses. Geoscience Frontiers 13(6), 101398. https://doi.org/10.1016/j.gsf.2022.101398

Bivins, A., Greaves, J., Fischer, R., Yinda, K. C., Ahmed, W., Kitajima, M., Munster, V.J., & Bibby, K. (2020). Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science & Technology Letters, 7(12), 937-942. https://doi.org/10.1021/acs.estlett.0c00730

Caggiano, G., Apollonio, F., Triggiano, F., Diella, G., Stefanizzi, P., Lopuzzo, M., D´Ambrosio, M., Bartolomeo, N., Barbuti, G., Sorrenti, G.T., Magarelli, P., Sorrenti, D.P., Marcotrigiano, V., De Gilio, O., & Montagna, M.T. (2021). SARS-CoV-2 in the public tansport in Italy. International Journal of Environmental Research and Public Health, 18(21), 11415. https://doi.org/10.3390/ijerph182111415

Cartenì, A., Di Francesco, L., Henke, I., Marino, T.V., & Falanga, A. (2021). The role of public transport during the second COVID-19 wave in Italy. Sustainability, 13(21),11905. https://doi.org/10.3390/su132111905

Cerrada-Romero, C., Berastegui-Cabrera, J., Camacho-Martínez, P., Goikoetxea-Aguirre, J., Pérez-Palacios, P., Santibáñez, S., Blanco-Vidal, M.J., Valiente, A., Alba, J., Rodríguez-Álvarez, R., Pascual, A., Oteo, J.A., Cisneros, J.M., Pachón, G., Casas-Flecha, I., Cordero, E., Pozo, F., & Sánchez-Céspedes, J. (2022). Excretion and viability of SARS-CoV-2 in feces and its association with the clinical outcome of COVID-19. Scientific Reports, 12,7379. https://doi.org/10.1038/s41598-022-11439-7

Coronado, Y., Navarro, R., Mosqueda, C., Valenzuela, V., Pérez, J.P., González-Mendoza, V., de la Torre, M., & Rocha, J. (2021). SARS-CoV-2 in wastewater from Mexico City used for irrigation in th eMezquital Valley: quantification and modeling of geographic dispersion. Environmental Monitoring, 68,580-590. https://doi.org/10.1007/s00267-021-01516-4

D´Aoust, P.M., Graber, T.E., Mercier, E., Montpetit, D., Alexandrov, I., Neault, N., Baig, A.T., Mayne, J., Zhang, X., Alain, T., Servos, M.R., Srikanthan, N., MacKenzie, M., Figeys D., Manuel, D., Jüni, P., MacKenzie A., & Delatolla, R. (2021). Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Science of the Total Environment, 770, 145319. https://doi.org/10.1016/j.scitotenv.2021.145319

Denpetkul, T., Pumkaew, M., Sittipunsakda, O., Leaungwutiwong, P., Mongkolsuk, S., & Sirikanchana, K. (2022). Effects of face masks and ventilation on the risk of SARS-CoV-2 respiratory transmission in public toilets: a quantitative microbial risk assessment. Journal of Water and Health, 20 (2), 300. https://doi.org/10.2166/wh.2022.190

Eales, O., Page, A.J., Tang, S.N., Walters, C.E., Wang, H., Haw, D., Trotter, A.J., Le Viet, T., Foster-Nyarko, E., Prosolek, S., Atchinson, C., Ashby, D., Cooke, G., Barclay, W., Donnelly, C.A., O´Grady, J., Volz, E., The COVID-19 Genomics UK (COG-UK) Consortium, Darzi, A., Ward, H., Elliot, P., & Riley, S. (2023). The use of representative community samples to assess SARS-CoV-2 lineage competition: Alpha outcompetes Beta and wild-type in England from January to March 2021. Microbial Genomics, 9,000887. https://doi.org/10.1099/mgen.0.000887

Elbe, S. & Buckland-Merret, G. (2017). Data, disease and diplomacy: GISAID´s innovative contribution to global health. Global Challenges, 1(1),33-46. https://doi.org/10.1002/gch2.1018

Ghimire, S., Sharma, S., Patel, A., Budhathoki, R., Chakinala, R., Khan, H., Lincoln, M., & Georgeston, M. (2021). Diarrhea is associated with increased severity of disease in COVID-19: systemic review and metaanalysis. SN Comprehensive Clinical Medicine, 3,28-35. https://doi.org/10.1007/s42399-020-00662-w

GISAID, (2022). https://gisaid.org/hcov19-variants/. Accession date, October 28th 2022.

Gomes da Silva, P., Gonçalves, J., Nascimento M.SJ., Sousa, S.I., & Mesquita, J.R. (2022). Detection of SARS-CoV-2 in the indoor and outdoor areas of urban public transport systems of three major cities of Portugal in 2021. International Journal of Environmental Research and Public Health, 19(10), 5955. https://doi.org/10.3390/ijerph19105955

González-Reyes, J.R., Hernández-Flores, M.L., Paredes-Zarco, J.E., Téllez-Jurado, A., Fayad-Meneses, O., & Carranza-Ramírez, L. (2021). Detection of SARS-CoV-2 in wastewater northeast of Mexico City: Strategy for monitoring and prevalence of COVID-19. International Journal of Environmental Research and Public Health, 18(16), 8547. https://doi.org/10.3390/ijerph18168547

Haramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of The Total Environment, 737, 140405.https://doi.org/10.1016/j.scitotenv.2020.140405

Hoffman, J.S., Hirano, M., Panpradist, N., Breda, J., Ruth, P., Xu, Y., Lester, J., Nguyen, B.H., Ceze, L., & Patel, S.N. (2022). Passively sensing SARS-CoV-2 RNAin public transport buses. Science of the Total Environment, 821, 152790. http://dx.doi.org/10.1016/j.scitotenv.2021.152790

Khare, S., Gurry, C., Freitas, L., Schultz, M. B., Bach, G., Diallo, A., Akite, N., Ho, J., Lee, R.T.C., Yeo, W., GISAID Core Curation Team, & Maurer-Stroh, S. (2021). GISAID`s role in pandemix response. China CDC weekly, 3(49),1049-1051. https://doi.org/10.46234/ccdcw2021.255

Lira-Morales, JD., Medrano-Félix, JA., Martínez-Rodríguez, CI., Castro-del Campo, N., & Chaidez C. (2023a) Disminución del RNA de SARS-CoV-2 en matrices acuáticas ambientales. Revista Biociencias, 10 e1529. https://doi.org/10.15741/revbio.10.e1529

Lira-Morales, J.D., López-Cuevas, O., Medrano-Félix, JA., González-Gómez, JP., González-López, I., Castro-del Campo, N., Gomez-Gil, B., & Chaidez, C. (2023b) Genomic Surveillance of SARS-CoV-2 in México: Three Years since Wuhan, China’s First Reported Case. Microorganisms, 5,2223. https://doi.org/10.3390/v15112223

Lu, D., Huang, Z., Luo, J., Zhang, X., & Sha, S. (2020). Primary concentration- The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. Science of the Total Environment, 747,141245. https://doi.org/10.1016/j.scitotenv.2020.141245

Megyeri, K., Dernovics, A., Al-Luhaibi Z.I., & Rosztóczy. (2021). COVID-19-associated diarrhea. World Journal of Gastroenterology, 27 (23),3208-3222. https://dx.doi.org/10.3748/wjg.v27.i23.3208

Mitic, V., Lazovic, G., Milosevic, D., Ristanovic, E., Simeunovic, D., Tsay, C., Milosevic, M., &Vlahovic, C. (2021). Brownian fractal nature coronavirus motion. Modern Physics Letters B, 35 (4), 2150076. https://doi.org/10.1142/S0217984921500767

Musa, S.S., Zhao, S., Wang, M.H., Habib, A.G., Mustapha, U.T., & He, D. (2020). Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infectious Diseases of Poverty, 9,96. https://doi.org/10.1186/s40249-020-00718-y

Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K.K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal detection and phylogenetic detection of SARS-CoV-2 in municipal wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/10.1016/j.xcrm.2020.100098

Park, J., & Kim, G. (2021). Risk of COVID-19 infection in public transportation: The development of a model. International Journal of Environmental Research and Public Health, 18(23),12790. https://doi.org/10.3390/ijerph182312790

Poeta, M., Cioffi, V., Buccigrossi, V., Corcione, F., Peltrini, R., Amoresano, A., Magurano, F., Viscardi, M., Fusco, G., Tarallo, A., Damiano, C., Lo Vecchio, A., Bruzzese, E., & Guarino, A. (2022). SARS-CoV-2 causes secretory diarrhea with an enterotoxin-like mechanism, which is reduced by diosmectite. Heliyon, 8(8), e10246. https://doi.org/10.1016/j.heliyon.2022.e10246

Sapula, S.A., Whittall, J.J., Pandopulos, A.J., Gerber, C., & Venter, H. (2021). An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Science of the Total Environment, 785,147270. https://doi.org/10.1016/j.scitotenv.2021.147270

Singh, S., Kumar, V., Kapoor, D., Dhanjal, D.S., Bhatia, S., Singh, N., Romero, R., Ramamurthy, P.C., & Singh, J. (2021). Detection and disinfection of COVID-19 virus in wastewater. Environmental Chemistry Letters, 19, 1917-1933. https://doi.org/10.1007/s10311-021-01202-1

Shu, Y., & McCauley, J. (2017). GISAID:from vision to reality. EuroSurveillance, 22(13), https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

Swift, C.L., Isanovic, M., Correa Velez, K. E., & Norman, S. (2021). Community-level SARS-CoV-2 sequence diversity revealed by wastewater sampling. Science of the Total Environment, 801, 149691, https://doi.org/10.1016/j.scitotenv.2021.149691

Thongpradit, S., Prasongtanakij, S., Srisala, S., Kumsang, Y., Chanprasertyothin, S., Boonkongchuen, P., Pitidhammabhorn, D., Manomaipiboon, P., Somchaiyanon, P., Chandanachukala, S., & Hirunrueng, T. (2022). A simple method to detect SARS-CoV-2 in wastewater at low virus concentration. Journal of Environmental and Public Health, 2022, 4867626, https://doi.org/10.1155/2022/4867626

Tsuchihashi, Y., Yamagishi, T., Suzuki, M., Sekizuka, T., Kuroda, M., Itoi, T., Matsumura, A., Yamada, N., Ishii, Y., Kawamura, N., Hitomi, Y., Hiroshima, T., Azuma, K., Saito, K., & Kawanishi, N. (2021). High attack rate of SARS-CoV-2 infections during a bus tour in Japan. Journal of Travel Medicine, 28,8, https://doi.org/10.1093/jtm/taab111

World Health Organization [WHO]. (2020a). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 . Accession date, October 26th 2022.

World Health Organization [WHO]. (2020b). Transmission of SARS-CoV-2: implications for infection prevention precautions. https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions. Accession date, February 22nd 2023.

World Health Organization [WHO]. (2023). WHO Coronavirus (COVID-19) dashboard. https://covid19.who.int. Accession date, February 24th 2023.

Licencia Creative Commons
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.