EN PRENSA. Detección de SARS-CoV-2 en sistemas de drenaje de autobuses y terminal de autobuses en México. EN PRENSA
pdf

Palabras clave

SARS-CoV-2
COVID-19
Agua Residual
Autobuses
Variantes de preocupación

Métricas de PLUMX 

Resumen

El transporte público (aéreo, marítimo y terrestre) puede albergar individuos potencialmente positivos para COVID-19, por lo que la epidemiología basada en agua residual puede emplearse para evitar su propagación. El presente estudio se enfocó en rastrear la presencia de SARS-CoV-2 en agua residual de tanques sépticos de autobuses provenientes de destinos nacionales e internacionales, así como en el sistema de drenaje de una terminal de autobuses. La detección se realizó mediante el protocolo de PCR-Tiempo Real establecido por el Centro para el Control y Prevención de Enfermedades de los Estados Unidos. SARS-CoV-2 fue detectado en 8.88 % de las muestras de autobuses y el sistema de drenaje de la terminal (4 de 45). Las muestras positivas se secuenciaron y se identificaron las variantes Delta y Ómicron como las más prevalentes. Nuestros resultados demuestran que la Epidemiología basada en aguas residuales (WBE) provee una herramienta sensible y confiable para identificar la presencia de individuos positivos para COVID-19 que arriban en autobuses a una ciudad. Asimismo, la WBE acoplada a secuenciación de genomas completos puede servir como alerta temprana para el rastreo y despliegue de medidas preventivas ante la introducción de variantes de preocupación.

https://doi.org/10.15741/revbio.11.e1631
pdf

Citas

Ahmed, W., Bertsch, P.M., Angel, N., Bibby, K., Bivins, A., Dieners, L., Edson, J., Ehret, J., Gyawali, P., Hamilton, K.A., Hosegood, I., Hugenholtz, P., Jiang, G., Kitajima, M., Sichani, H.T., Shi, J., Shimko, K.M., Simpson, S.L., Smith, W.J.M., Symonds, E.M., Thomas, K.V., Verhagen, R., Zaugg, J., & Mueller, J.F. (2020). Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. Journal of Travelers Medicine, 27(5),1-11. https://doi.org/10.1093/jtm/taaa116

Ahmed, W., Bivins, A., Simpson, S.L., Bertsch, P.M., Ehert, J., Hosegood, I., Metcalfe, S.S., Smith, W.J.M., Thomas, K.V., Tynan, J., & Mueller, F.F. (2022). Wastewater surveillance demonstrates high predictive value for COVID-19 infection on board repatriation flights to Australia. Environment International, 158,106938. https://doi.org/10.1016/j.envint.2021.106938

Arantes, I., Bello, G., Nascimento, V., Souza, V., da Silva, A., Silva, D., Nascimento, F., Mejia M., Brandao, J.M., Gonçalves L., Silva, G., Fernandes da Costa, C., Abdalla, L., Santos, V.H., Amorim Ramos, T.C., Piantham, C., Ito, K., Mendoça Siqueira, M., Resende, P.C., Wallau, G.L., Delatorre, E., Gräf, T., & Naveca, F.G. (2023). Comparative epidemic expansion of SARS-CoV-2 variants Delta and Omicron in the Brazilian state of Amazonas. Nature communications, 14,2048. https://doi.org/10.1038/s41467-023-37541-6

Basavaraju, S., Aswathanarayan, J.B., Basavegowda, M., & Somanathan, B. (2021). Coronavirus: Occurrence, surveillance and persistence in wastewater. Environmental Monitoring and Assessment, 193,508. https://doi.org/10.1007/s10661-021-09303-8

Bertone, M., Mikszewski, A., Stabile, L., Riccio, L., Cortellessa, G., d´Ambrossio, F.R., Papa, V., Morawska, L., & Buonanno, G. (2022). Assessment of SARS-CoV-2 airborne infection transmission risk in public buses. Geoscience Frontiers 13(6), 101398. https://doi.org/10.1016/j.gsf.2022.101398

Bivins, A., Greaves, J., Fischer, R., Yinda, K. C., Ahmed, W., Kitajima, M., Munster, V.J., & Bibby, K. (2020). Persistence of SARS-CoV-2 in Water and Wastewater. Environmental Science & Technology Letters, 7(12), 937-942. https://doi.org/10.1021/acs.estlett.0c00730

Caggiano, G., Apollonio, F., Triggiano, F., Diella, G., Stefanizzi, P., Lopuzzo, M., D´Ambrosio, M., Bartolomeo, N., Barbuti, G., Sorrenti, G.T., Magarelli, P., Sorrenti, D.P., Marcotrigiano, V., De Gilio, O., & Montagna, M.T. (2021). SARS-CoV-2 in the public tansport in Italy. International Journal of Environmental Research and Public Health, 18(21), 11415. https://doi.org/10.3390/ijerph182111415

Cartenì, A., Di Francesco, L., Henke, I., Marino, T.V., & Falanga, A. (2021). The role of public transport during the second COVID-19 wave in Italy. Sustainability, 13(21),11905. https://doi.org/10.3390/su132111905

Cerrada-Romero, C., Berastegui-Cabrera, J., Camacho-Martínez, P., Goikoetxea-Aguirre, J., Pérez-Palacios, P., Santibáñez, S., Blanco-Vidal, M.J., Valiente, A., Alba, J., Rodríguez-Álvarez, R., Pascual, A., Oteo, J.A., Cisneros, J.M., Pachón, G., Casas-Flecha, I., Cordero, E., Pozo, F., & Sánchez-Céspedes, J. (2022). Excretion and viability of SARS-CoV-2 in feces and its association with the clinical outcome of COVID-19. Scientific Reports, 12,7379. https://doi.org/10.1038/s41598-022-11439-7

Coronado, Y., Navarro, R., Mosqueda, C., Valenzuela, V., Pérez, J.P., González-Mendoza, V., de la Torre, M., & Rocha, J. (2021). SARS-CoV-2 in wastewater from Mexico City used for irrigation in th eMezquital Valley: quantification and modeling of geographic dispersion. Environmental Monitoring, 68,580-590. https://doi.org/10.1007/s00267-021-01516-4

D´Aoust, P.M., Graber, T.E., Mercier, E., Montpetit, D., Alexandrov, I., Neault, N., Baig, A.T., Mayne, J., Zhang, X., Alain, T., Servos, M.R., Srikanthan, N., MacKenzie, M., Figeys D., Manuel, D., Jüni, P., MacKenzie A., & Delatolla, R. (2021). Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Science of the Total Environment, 770, 145319. https://doi.org/10.1016/j.scitotenv.2021.145319

Denpetkul, T., Pumkaew, M., Sittipunsakda, O., Leaungwutiwong, P., Mongkolsuk, S., & Sirikanchana, K. (2022). Effects of face masks and ventilation on the risk of SARS-CoV-2 respiratory transmission in public toilets: a quantitative microbial risk assessment. Journal of Water and Health, 20 (2), 300. https://doi.org/10.2166/wh.2022.190

Eales, O., Page, A.J., Tang, S.N., Walters, C.E., Wang, H., Haw, D., Trotter, A.J., Le Viet, T., Foster-Nyarko, E., Prosolek, S., Atchinson, C., Ashby, D., Cooke, G., Barclay, W., Donnelly, C.A., O´Grady, J., Volz, E., The COVID-19 Genomics UK (COG-UK) Consortium, Darzi, A., Ward, H., Elliot, P., & Riley, S. (2023). The use of representative community samples to assess SARS-CoV-2 lineage competition: Alpha outcompetes Beta and wild-type in England from January to March 2021. Microbial Genomics, 9,000887. https://doi.org/10.1099/mgen.0.000887

Elbe, S. & Buckland-Merret, G. (2017). Data, disease and diplomacy: GISAID´s innovative contribution to global health. Global Challenges, 1(1),33-46. https://doi.org/10.1002/gch2.1018

Ghimire, S., Sharma, S., Patel, A., Budhathoki, R., Chakinala, R., Khan, H., Lincoln, M., & Georgeston, M. (2021). Diarrhea is associated with increased severity of disease in COVID-19: systemic review and metaanalysis. SN Comprehensive Clinical Medicine, 3,28-35. https://doi.org/10.1007/s42399-020-00662-w

GISAID, (2022). https://gisaid.org/hcov19-variants/. Accession date, October 28th 2022.

Gomes da Silva, P., Gonçalves, J., Nascimento M.SJ., Sousa, S.I., & Mesquita, J.R. (2022). Detection of SARS-CoV-2 in the indoor and outdoor areas of urban public transport systems of three major cities of Portugal in 2021. International Journal of Environmental Research and Public Health, 19(10), 5955. https://doi.org/10.3390/ijerph19105955

González-Reyes, J.R., Hernández-Flores, M.L., Paredes-Zarco, J.E., Téllez-Jurado, A., Fayad-Meneses, O., & Carranza-Ramírez, L. (2021). Detection of SARS-CoV-2 in wastewater northeast of Mexico City: Strategy for monitoring and prevalence of COVID-19. International Journal of Environmental Research and Public Health, 18(16), 8547. https://doi.org/10.3390/ijerph18168547

Haramoto, E., Malla, B., Thakali, O., & Kitajima, M. (2020). First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Science of The Total Environment, 737, 140405.https://doi.org/10.1016/j.scitotenv.2020.140405

Hoffman, J.S., Hirano, M., Panpradist, N., Breda, J., Ruth, P., Xu, Y., Lester, J., Nguyen, B.H., Ceze, L., & Patel, S.N. (2022). Passively sensing SARS-CoV-2 RNAin public transport buses. Science of the Total Environment, 821, 152790. http://dx.doi.org/10.1016/j.scitotenv.2021.152790

Khare, S., Gurry, C., Freitas, L., Schultz, M. B., Bach, G., Diallo, A., Akite, N., Ho, J., Lee, R.T.C., Yeo, W., GISAID Core Curation Team, & Maurer-Stroh, S. (2021). GISAID`s role in pandemix response. China CDC weekly, 3(49),1049-1051. https://doi.org/10.46234/ccdcw2021.255

Lira-Morales, JD., Medrano-Félix, JA., Martínez-Rodríguez, CI., Castro-del Campo, N., & Chaidez C. (2023a) Disminución del RNA de SARS-CoV-2 en matrices acuáticas ambientales. Revista Biociencias, 10 e1529. https://doi.org/10.15741/revbio.10.e1529

Lira-Morales, J.D., López-Cuevas, O., Medrano-Félix, JA., González-Gómez, JP., González-López, I., Castro-del Campo, N., Gomez-Gil, B., & Chaidez, C. (2023b) Genomic Surveillance of SARS-CoV-2 in México: Three Years since Wuhan, China’s First Reported Case. Microorganisms, 5,2223. https://doi.org/10.3390/v15112223

Lu, D., Huang, Z., Luo, J., Zhang, X., & Sha, S. (2020). Primary concentration- The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. Science of the Total Environment, 747,141245. https://doi.org/10.1016/j.scitotenv.2020.141245

Megyeri, K., Dernovics, A., Al-Luhaibi Z.I., & Rosztóczy. (2021). COVID-19-associated diarrhea. World Journal of Gastroenterology, 27 (23),3208-3222. https://dx.doi.org/10.3748/wjg.v27.i23.3208

Mitic, V., Lazovic, G., Milosevic, D., Ristanovic, E., Simeunovic, D., Tsay, C., Milosevic, M., &Vlahovic, C. (2021). Brownian fractal nature coronavirus motion. Modern Physics Letters B, 35 (4), 2150076. https://doi.org/10.1142/S0217984921500767

Musa, S.S., Zhao, S., Wang, M.H., Habib, A.G., Mustapha, U.T., & He, D. (2020). Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infectious Diseases of Poverty, 9,96. https://doi.org/10.1186/s40249-020-00718-y

Nemudryi, A., Nemudraia, A., Wiegand, T., Surya, K., Buyukyoruk, M., Cicha, C., Vanderwood, K.K., Wilkinson, R., & Wiedenheft, B. (2020). Temporal detection and phylogenetic detection of SARS-CoV-2 in municipal wastewater. Cell Reports Medicine, 1(6), 100098. https://doi.org/10.1016/j.xcrm.2020.100098

Park, J., & Kim, G. (2021). Risk of COVID-19 infection in public transportation: The development of a model. International Journal of Environmental Research and Public Health, 18(23),12790. https://doi.org/10.3390/ijerph182312790

Poeta, M., Cioffi, V., Buccigrossi, V., Corcione, F., Peltrini, R., Amoresano, A., Magurano, F., Viscardi, M., Fusco, G., Tarallo, A., Damiano, C., Lo Vecchio, A., Bruzzese, E., & Guarino, A. (2022). SARS-CoV-2 causes secretory diarrhea with an enterotoxin-like mechanism, which is reduced by diosmectite. Heliyon, 8(8), e10246. https://doi.org/10.1016/j.heliyon.2022.e10246

Sapula, S.A., Whittall, J.J., Pandopulos, A.J., Gerber, C., & Venter, H. (2021). An optimized and robust PEG precipitation method for detection of SARS-CoV-2 in wastewater. Science of the Total Environment, 785,147270. https://doi.org/10.1016/j.scitotenv.2021.147270

Singh, S., Kumar, V., Kapoor, D., Dhanjal, D.S., Bhatia, S., Singh, N., Romero, R., Ramamurthy, P.C., & Singh, J. (2021). Detection and disinfection of COVID-19 virus in wastewater. Environmental Chemistry Letters, 19, 1917-1933. https://doi.org/10.1007/s10311-021-01202-1

Shu, Y., & McCauley, J. (2017). GISAID:from vision to reality. EuroSurveillance, 22(13), https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

Swift, C.L., Isanovic, M., Correa Velez, K. E., & Norman, S. (2021). Community-level SARS-CoV-2 sequence diversity revealed by wastewater sampling. Science of the Total Environment, 801, 149691, https://doi.org/10.1016/j.scitotenv.2021.149691

Thongpradit, S., Prasongtanakij, S., Srisala, S., Kumsang, Y., Chanprasertyothin, S., Boonkongchuen, P., Pitidhammabhorn, D., Manomaipiboon, P., Somchaiyanon, P., Chandanachukala, S., & Hirunrueng, T. (2022). A simple method to detect SARS-CoV-2 in wastewater at low virus concentration. Journal of Environmental and Public Health, 2022, 4867626, https://doi.org/10.1155/2022/4867626

Tsuchihashi, Y., Yamagishi, T., Suzuki, M., Sekizuka, T., Kuroda, M., Itoi, T., Matsumura, A., Yamada, N., Ishii, Y., Kawamura, N., Hitomi, Y., Hiroshima, T., Azuma, K., Saito, K., & Kawanishi, N. (2021). High attack rate of SARS-CoV-2 infections during a bus tour in Japan. Journal of Travel Medicine, 28,8, https://doi.org/10.1093/jtm/taab111

World Health Organization [WHO]. (2020a). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 . Accession date, October 26th 2022.

World Health Organization [WHO]. (2020b). Transmission of SARS-CoV-2: implications for infection prevention precautions. https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions. Accession date, February 22nd 2023.

World Health Organization [WHO]. (2023). WHO Coronavirus (COVID-19) dashboard. https://covid19.who.int. Accession date, February 24th 2023.

Licencia Creative Commons
Revista Bio Ciencias por Universidad Autónoma de Nayarit se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Unported.
Basada en una obra en http://biociencias.uan.edu.mx/.
Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional