Abstract
Healthy snacks are currently in demand. Snacks are considered products of poor nutritional quality because they are generally made with corn starch. Amaranth is an excellent alternative due to its high nutritional value due to its high protein quality, making this grain a good raw material to enrich snacks. On the other hand, the extrusion process has high antioxidant and nutrient retention. In this research, the conditions of the extrusion process were adjusted to achieve high values in texture, physical, nutritional and phytochemical characteristics by applying the response surface analysis technique. A central composite rotable experiment design was used with three independent variables [Barrel Temperature (120 - 170 °C); Screw Speed (50 - 240 rpm); and Amaranth Inclusion Level (0 - 70%)] and five levels. Hardness, apparent density, radial expansion index, total flavonoids and total phenolic compounds content, antioxidant activity and in vitro protein digestibility were selected as dependent variables. The optimization resulted in two different combinations of optimal process variables (optimization 1: 162 °C, 240 rpm, 12.7 % amaranth; and optimization 2: 170 °C, 240 rpm, 29 % amaranth).
References
Adom, K. & Liu, R. (2002). Antioxidant activity of grains. Journal of Agricultural and Food Chemistry, 50(21), 6182-6187. https://doi.org/10.1021/jf0205099
Adom, K., Sorrells, M. & Liu, R. H.(2003). Phytochemical profiles and antioxidant activity of wheat varieties. Journal of Agricultural and Food Chemistry, 51(26), 7825-7834. https://doi.org/10.1021/jf030404l
Dewanto, V., Wu, X., & Liu, R. (2002). Processed sweet corn has higher antioxidant activity. Journal of Agricultural and Food Chemistry, 50(17), 4959-4964. https://doi.org/10.1021/jf0255937
Escalante, A., Ramírez, B., Torres, P., López, J., Figueroa, J., Barrón, J., Morales, I., Ponce, N., & Gutiérrez, R. (2014). Obtaining Ready-to-Eat Blue Corn Expanded Snacks With Anthocyanins Using Extrusion Process and Response Surface Methodology. Molecules, 19 (12), 21066-21084. https://doi.org/10.3390/molecules191221066
Espinoza, R., Reyes, C., Milán, J., López, J., Paredes, O., & Gutiérrez, R. (2016). Healthy Ready-to-Eat Expanded Snack with High Nutritional and Antioxidant Value Produced from Whole Amarantin Transgenic Maize and Black Common Bean. Plant Foods for Human Nutrition, 71, 218-224. https://doi.org/10.1007/s11130-016-0551-8
Félix, J., Gutiérrez, R., López, J., López, G., Quintero, M., Perales, J., & Montes, J. (2021). Nutritional, antioxidant and phytochemical characterization of healthy ready-to-eat expanded snack produced from maize/common bean mixture by extrusion. LWT - Food Science and Technology, 142, Article 111053. https://doi.org/10.1016/j.lwt.2021.111053
Félix, J., Montes, J., Reyes, C., Perales, J., Gómez, M., Aguilar, E., & Gutiérrez, R. (2020). Second-generation snacks with high nutritional and antioxidant value produced by an optimized extrusion process from corn/common bean flours mixtures. LWT - Food Science and Technology, 124, Article 109172. https://doi.org/10.1016/j.lwt.2020.109172
Gámez, L., Gutiérrez, R., Gómez, C., Perales, J., Milán, J., Cuevas, E., Mora, S., & Reyes, C. (2021). Effect of the extruded amaranth flour addition on the nutritional, nutraceutical and sensory quality of tortillas produced from extruded creole blue maize flour. Biotecnia, 23(2), 103-112. https://doi.org/10.18633/biotecnia.v23i2.1385
Gómez, M., Reyes, C., Milán, J., Partida, R., Espinoza, R., Preciado, R., & Gutiérrez, R. (2021). Gluten-free healthy snack with high nutritional and nutraceutical value elaborated from a mixture of extruded underutilized grains (quality protein maize/tepary bean). Acta Universitaria Multidisciplinary Scientific Journal, 31, e3024. http://doi.org/10.15174.au.2021.3024
Gujska, E., & Khan, K. (1990). Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. Journal of Food Science, 55(2), 466-469. https://doi.org/10.1111/j.1365-2621.1990.tb06788.x
Gutiérrez, H., & De la Vara, R. (2008). Análisis y diseño de experimentos. 2 ed. McGraw-Hill Interamericana.
Hejazi, S., Orsat, V., Azadi, B., & Kubow, S. (2016). Improvement of the in vitro protein digestibility of amaranth grain through optimization of the malting process. Journal of Cereal Science, 68, 59-65. https://doi.org/10.1016/j.jcs.2015.11.007
Herrera, M., Cruz, C., Trujillo, C., Rodríguez, M., García, H., Chávez, J., Oliart, R., & Guzmán, R. (2017). Antioxidant and antiproliferative activity of blue corn and tortilla from native maize. Chemistry Central Journal, 11, (110). https://doi.org/10.1186%2Fs13065-017-0341-x
International Production Assessment Division. (2024, April 15). Corn explorer. U.S. Department of Agriculture. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0440000
Khuri, A., Mukhopadhway, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149. https://doi.org/10.1002/wics.73
Leonard, W., Zhang, P., Ying, D., & Fang, Z. (2019). Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety, 19(1) 218-246. https://doi.org/10.1111/1541-4337.12514
Nikinmaa, M., Zehnder, O., Nystrom, L., Sozer, N. (2023). Effect of extrusion processing parameters on structure, texture and dietary fibre composition of directly expanded wholegrain oat-based matrices. LWT-Food Science and Technology, 184, 114972. https://doi.org/10.1016/j.lwt.2023.114972
Park, J., Rhee, K., Kim, B., & Rhee, K. (1993). Single-screw extrusion of defatted soy flour, corn starch and raw beef blends. Journal of Food Science, 58(1), 9-19. https://doi.org/10.1111/j.1365-2621.1993.tb03201.x
Rathod, R., & Annapure, U. (2016). Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT-Food Science and Technology, 66, 114-123. https://doi.org/10.1016/j.lwt.2015.10.028
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Shah, F., Sharif, M., Bashir, S., & Ahsan, F. (2018). Role of Healthy Extruded Snacks to Mitigate Malnutrition. Food Reviews International, 35, 299-323. https://doi.org/10.1080/87559129.2018.1542534
Singleton, V., Orthofer, R., & Lamuele, R. (1999). Analysis of total Phenols and other oxidation substrates and antioxidant by means of Folin-Ciocalteu Reagent. Methods in enzymology, 299, 152-165. https://doi.org/10.1016/S0076-6879(99)99017-1
Soriano, M., Arias, I., Carrillo, J., & Rosas, D. (2019). Nutritional functional value and therapeutic utilization of Amaranth. Journal of Analytical & Pharmaceutical Research, 7, 596-600. https://doi.org/10.5772/intechopen.86897
Wang, W., Klopfenstein, C., & Ponte, J. (1993). Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat bran and on the baking quality of the wheat bran. Cereal Chemistry, 70, 707-711. https://www.cerealsgrains.org/publications/cc/backissues/1993/Documents/cc1993a165.html
Xu, B., & Chang, S. (2007). A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. Journal of Food Science, 72, 159-166. https://doi:10.1111/j.1750-3841.2006.00260.x
Zhang, B., Liu, G., Ying, D., Sanguansri, L., & Augustin, M. (2017). Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal. Food Research International, 100, 658-664. https://doi.org/10.1016/j.foodres.2017.07.060
Revista Bio Ciencias by Universidad Autónoma de Nayarit under Creative Commons Attribution-NonCommercial 3.0 Unported License.
Based on work of http://biociencias.uan.edu.mx/.
Further permits not covered by this licence can be found at http://editorial.uan.edu.mx/index.php/BIOCIENCIAS.